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PREFACE 

 

Cranes and hoisting machines are widely used in many areas of modern 

production. Transportation of different loads at the sea and river ports, warehouses, 

building yards as well as at machine-building and metallurgical factories is 

impossible without them. Thus, the improvement of their operational efficiency is a 

significant issue to study. 

In the monograph authors have investigated the dynamic, energetic, and 

electric processes, which take place in the different types of cranes and hoisting 

machines. It led them to the grounded recommendations, which allowed to exploit 

cranes and hoisting machines mechanisms in optimal modes. It, undoubtedly, 

positively impacts machines’ performance. 

In chapter 1 authors described the results of a mine winder dynamics and 

optimal control investigations. They have used a three-mass dynamical model of a 

hoisting machine (mine winder). The researched modes were the starting 

(acceleration) and the braking (deceleration) of the mine winder during lifting and 

lowering of the final load (skip). The obtained results, which are in both analytical 

and numerical forms, refer to the dynamic and energetic indicators of the machine. 

They may be used for: calculation of dynamical loads in the elements of the mine 

winder under different methods of control (rheostatic or with a frequency inverter); 

improving the energy efficiency of the hoist machine exploitation; increasing of the 

mine winder operational life; developing or modernization of drive control systems, 

etc. 

The main goal of chapter 2 is connected with revealing the influence of optimal 

(or suboptimal) control to the initiation and evolution of dynamic and energetic 

processes that take place in a tower crane (particularly in the slewing mechanism and 

the trolley movement mechanism). Authors have used both linear and nonlinear 

mathematical models of the mentioned mechanisms. In the carried out calculations 
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analytical and numerical approaches have been used. The obtained dynamic and 

energetic characteristics have been analyzed via maximal and RMS values, plots, and 

phase plots (refer to loads oscillations). In chapter 2 authors have approved that 

optimization of the slewing and trolley movement modes has a quite positive effect 

on the overall performance of the crane operation. Indeed, they cause the load 

pendular oscillations elimination, decreasing the overall level of dynamical loads and 

energy losses in the mechanisms’ drives. 

In chapter 3 authors focused on the impact of optimal control of bridge and 

gantry cranes on their efficiency indicators. The distinguishing feature of the 

presented results relates to the taking into account the electrical processes in the 

cranes’ drive. They were accounted in the conducted calculations as constrains and as 

electro-dynamical forces. In chapter 3 have been shown the results, which may be 

used for a reducing of a crane motion cycle duration (even under unpredicted wind 

rushes), elimination of the load pendular oscillations, and improvement of energetic 

and dynamic characteristics of a crane. 

The common feature of the researches, which is presented in the monograph, is 

a wide range of the used optimization criteria. They all are grounded by theoretical 

and practical goals. The first and foremost is connected with the desire of showing 

the different approaches, that allowed authors to find the solutions of the quite 

difficult (constrained, nonlinear) optimization problems. 

These insights may be used in the allied sciences. 

The practical usefulness of the research relates to the recommendations for: 

adjusting of different options of frequency-controlled cranes’ and mine winders’ 

drives; selection one or another optimal mode of a mechanism motion (according to 

the exploitation conditions and practical requirements); illustrations of performance 

reserves (in terms of capacity, energy efficiency, and reliability), etc. Their 

application provides decreasing of undesired (dynamic and energetic) features of 

cranes’ and mine winders’ mechanisms. 

In the presented research were used classical (analytical dynamics, 

mathematical analysis, variation calculus, dynamic programming etc.) and modern 
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(particle swarm optimization and its modifications, differential evolution, etc.) 

methods. Their combinations allowed to achieve the set goals and to develop new 

approaches to the problems of optimal control of mechanisms of cranes and mine 

winders. 

Most of the monograph’s content has been obtained in the frame of scientific 

research supported by the public grant of Ukraine „Scientific substantiation and 

development of methods of dynamic modeling and mode-parametric optimization of 

modern load-lifting machines” (registration number 0119U100848). It was conducted 

by scholars of National University of Life and Environmental Sciences of Ukraine. 

The monograph is useful for specialists in the area of dynamics and optimal 

control, scientists, workers, and operators of cranes and hoisting machines, 

developers of the control systems, students, and graduate students of higher technical 

institutions. 
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CHAPTER 1. OPTIMAL CONTROL OF A MINE WINDER 

 

1.1 Dynamic optimization of a mine winder acceleration mode 

 

The issue of the mine winders’ efficient operation is particularly relevant in 

modern conditions of mining. This is due to the fact that one can increase the 

technical and economic indicators of the whole production process by carrying out 

certain activities (machine design modernization; flexible and damping and/or inertial 

elements introduction into the machine structure, replacement of the old relay control 

systems by the modern computer-integrated ones, etc.) The mentioned activities 

should be carried out primarily for the technically outdated mine winders. It is 

possible to extend its service life, and in some cases to improve the energy efficiency 

performance of hoisting by reducing the dynamic loads in the machine’s elements. 

In order to study the mine winder operation dynamics, in the scientific papers 

[1, 2] was presented a multi-mass dynamical system with visco-flexible links. This 

has allowed taking into account wave processes in the ropes and estimating loads 

they caused [1]. The calculations of rope complex spatial fluctuations have been 

carried out in scientific papers [3, 4]. There has been proved. Those dynamic loads 

depend on the skip’s speed diagram. A developed in [5] approach has made it 

possible to offer recommendations on preventing ropes severe wear. The issue of 

ropes dynamic calculation using approximate methods by applying the non-linear 

models is presented in the scientific paper [6]. These results can be used for 

approximate evaluation of dynamic processes in the mine winders. 

Experimental research results of loads initiating in machine’s components at 

different operation modes are presented in scientific paper [7], as well as the main 

factors affecting the machine dynamics are specified there. The parametric and 

operating parameters can be conditionally marked out among them [8]. The inertial, 

stiffness, and some other parameters of individual machine components, as well as 
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machine structure (components placement order in its structure), belong to the first 

group. The operating parameters include acceleration and deceleration durations, 

nature of external force impact and its magnitude [9]. 

Hoisting machines’ motion modes optimization causes a significant 

improvement in their technical and economic indicators [10].  

However, the optimization problems of mine winders have been studied in a 

few scientific papers [2, 11]. It means that there are unused reserves in improving of 

efficiency of a mine winder operation. 

The issue of mine winder motion optimization is important. Nowadays, there is 

no its final solution. That is why the scientific researches in this area is continuing. 

Moreover, considering the progress in the field of controlled electric drive, the 

realization of mine winder optimal motion laws is not the subject of the principal 

difficulties.  

Thus, the development of the algorithmic part of the modern mine winder 

motion control system should be carried out taking into account the nature of 

dynamic and energetic processes. 

Since the mine winder is a complex mechatronic system, several factors should 

be considered during the synthesis of optimal motion control. Therefore, the most 

appropriate (in terms of machine efficiency improvement) is control that relates to the 

complex optimization problems’ solutions (problems with complex optimization 

criteria). In addition, the very important issue is optimal control simulation, which 

allows to set optimal motion impact on dynamic and energetic indicators of the mine 

winder operation. This provides recommendations for implementation of optimal 

control on practice. 

The objective of the current study is a synthesis of the mine winder optimal 

acceleration mode whereby its energetic and dynamic technical and performance 

indicators are increasing. 

For study, we take a mine winder dynamic model, which is shown in fig. 1.1. 
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Fig. 1.1 The dynamic model of a mine winder 

 

The scheme in the fig. 1.1 shows: J1 – reduced (equivalent) load inertia of the 

motor rotor and connecting halfcoupling; J2 – reduced load inertia of connecting 

halfcoupling, reduction unit, and rope drum; m – reduced mass of the final load; R – 

rope drum radius; cϕ – reduced ratio of a coupling stiffness; cх – reduced ratio of rope 

stiffness; М – reduced torque of the mine winder drive; F – reduced resistance force. 

Reduced mass of the final load m includes the skip and the rope masses: according to 

the Rayleigh method, it is sufficient to add a third part of the rope mass to the final 

load for calculating the rope mass when vibrating. All of the mine winder dynamic 

parameters are reduced to the rope drum. The following assumptions were used to 

build the model (fig. 1): 

1) all components, except the flexible rope and flexible coupling, are absolutely 

rigid bodies with the same masses (moments of inertia); 

2) when hoisting the load the reduced stiffness ratio cх changes slightly, That is 

why it is a constant; 

3) all the resistance forces and skip weight are reduced to the force F; 

4) elastic properties of the coupling and rope are subject to Hooke’s law. 

The mathematical model which refers the mine winder dynamic model 

(fig. 1.1) can be represented as follows: 
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The point above the symbol means differentiation by time. The model shown 

in fig. 1.1 allows to study the dynamic loads in the flexible coupling and rope. 

In order to carry out the machine acceleration mode optimization we use the 

complex criterion which is presented in the following form: 

 

(1.2) 

 

where Т – duration of the system’s acceleration to the steady rate v; δ1 and δ2 – 

coefficients which reduce the corresponding components (driving torque and its 

change rate) to the dimensionless form and determine the importance of each of the 

components in the criteria structure; A0…A3 – constants ratios which are determined 

with the following expressions: 
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(1.4) 

 

 

where х0 – is the final load position at the motion start; v – is the steady speed of the 

final load. All boundary conditions (1.4) may be expressed through higher derivatives 

of the function х(t) by time, whereby we obtain: 

 

(1.5) 

 

We try to use variations calculus to minimize the expression (1.2). For this 

purpose we have written the Euler-Poisson formula [12], which for the integral 

functional (1.2) looks like as follows: 
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where Bi – are constant coefficients which may be expressed via coefficients A0…A3, 

δ1, δ2. In order to find the solution of the homogeneous differential equation (1.6) one 

should obtain a corresponding characteristic equation. By substitution x2=z we have 

presented it in the following form: 
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(1.8) 

 

 

where qj – are unknown coefficients (they should be used to minimize the value of 

the functional (1.2)). 

The solution of the boundary problem (1.8) has a significant volume and 

therefore is not presented here. In order to minimize the functional (1.2) we found its 

integrand, which is represented through higher derivatives by time of the boundary 

problem (1.8) solution. Thereafter, we take definite integral (1.2), which is a function 
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solve a system of linear equations: 
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high voltage asynchronous motor with phase rotor. The change of the engine is 

simulated as a effect of the three-stage change of rotor circle resistance. 

Fig. 1.2 shows the plots of the mine winder dynamical and energetic functions 

during its acceleration. All the plots are built for the following parameters of the mine 

winder: Т=5 s; δ1=0.5; δ2=0.5; v=12 m/s; m=4400 kg; J1=2400 kg·m2; 

J2=2000 kg·m2; R=2 m; cx=1,06·105 N/m; cϕ=1,2·109 Nm/rad. 

Grey diagrams on the fig. 1.2 correspond to the mine winder acceleration 

during rheostat control of the electric drive, and black diagrams correspond to 

suboptimal control. Analysis of the plots (fig. 1.2) shows that in conditions of 

identical acceleration time the energetic and dynamical indicators of mine winder 

during optimal motion control are much better than those corresponding to the drive 

motor rheostat control. 

For example, the maximum power consumption during suboptimal control is 

22.5% less than the same indicator refers to the rheostat control. The maximum 

torques of the engine and coupling are respectively 29.9% and 84.0% less than those 

obtained via rheostat control. Suboptimal control cause reducing the maximum force 

in the rope by 40.0%.  

 

a) 



CHAPTER 1 

15 

 

b) 

 

c) 
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d) 

Fig. 1.2 Plots of mine winder motion characteristics during its acceleration: a) engine 

capacity; b) machine drive torque; c) torque in the flexible coupling; d) force in the 

rope 

 

In addition, fig. 1.2 shows that at the end of acceleration (which lasts 5 

seconds) according to the suboptimal law the machine motion energetic and dynamic 

indicators are constant. Under rheostat-controlled start these characteristics continue 

to fluctuate. 

Hence, the effect of suboptimal control is in reducing the unwanted dynamic 

loads in machine’s components (in rope and flexible coupling), as well as in 

minimization of drive motor peak of power. 

In order to determine its practical value of the study we have carried out 

additional study. For this purpose, we choose the indicators under which the analysis 

of the estimation of the system motion. Such indicators include:  

1) maximal drive motor capacity Pмах, kW; 

2) maximal torque in coupling Мcpl.мах, kNm; 

3) maximal drive motor torque Мdr.мах, kNm; 



CHAPTER 1 

17 

4) maximal force in the rope, Frop.мах, kN. 

Independent factors were δ1 and Т. Value Т was being varied in the range 3-13 

s with increment 0.5 s. Coefficient δ1 was being varied in the range of 0.01-0.99 with 

increment of 0.01. Thus, 2079 computer experiments have been carried out to 

evaluate the approximate solution of optimization problem (1.1-1.5). In each 

experiment six estimated indicators were determined. Calculation results are shown 

in fig. 1.3. 

In order to determine the rational parameter settings of δ1 and Т during the 

mine winder operation, we carry out an analysis of the obtained data. First of all, we 

noted that increasing the acceleration time Т causes intensive reduction of all 

unwanted evaluation indicators. However, further increasing of T does not influence 

on them (fig. 1.3). Thus, rationally substantiated acceleration duration Т is in the 

range of 5-6 s. In this case, the engine is overloaded in 1.21-1.17 times and dynamic 

factors of the coupling and the rope are 1.45-1.33 and 1.46-1.37 respectively. 

 

а) 
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b) 

 

c) 
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d) 

Fig. 1.3 Contour graphics that illustrate dependencies of estimated indicators from 

values δ1 and Т: а) Pмах, kW; b) Мcpl.мах, kNm; c) Мdr.мах, kNm; d) Frop.мах, kN 

 

It should be noted that the implementation of the machine acceleration 

suboptimal mode is carried out by using the frequency inverter, which can withstand 

overload current 1.5 times for 60 s [15]. Thus, the overload of the engine and the 

frequency inverter at Т=5 s is in the acceptable limits. 

Using fig. 1.3, it is possible to determine the impact of the parameter δ1 on the 

dynamic and energetic indicators of the mine winder operation. While increasing δ1 

the indicator Pмах is slightly increasing. For example, when Т=5 s changing 

coefficient δ1 from 0.01 to 0.99 increases value Pмах only by 4.8%. The opposite 

situation for estimated dynamic indicators: when Т=5 s changing coefficient δ1 from 

0.01 to 0.99 decreases Мcpl.мах and Мdr.мах by 5.9% and Frop.мах by 5.1% respectively. 

For large values Т the impact of the coefficient δ1 is not significant. In order to reduce 

the criterion value, it is desirable to set the value δ1 in the range 0.01...0.1. The 
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performance should be given to the reducing of the root-mean-square value of the 

driving torque change rate [16]. 

 

1.2 Regime-parametric optimization of a mine winder deceleration 

 

The state-of-art mine winders work in quite hard regimes. Basically, it is 

connected with the demands of their high productivity and load capacity. At another 

point a mine winder should be reliable; its operation life must be as long as possible. 

Mentioned above demands are contradictory. In order to meet them (to a greater or a 

lesser extent), designers of a mine winder should find compromises. 

One of the ways to find such compromises is to design a mine winder with 

optimal parameters. Moreover, designers of the mine winder’s system of control 

should develop the speed diagrams for different regimes of mine winder motion. The 

solutions of both problems in aggregate allow improving the processes’ effectiveness 

of the hoist machine. 

Dynamic effects in elements of mine winders have been studied in many 

works. In articles [17, 18] the analytical expressions of maximum loads in rope in 

different operation conditions were obtained. In many articles, numerical simulation 

was used [19, 20]. It has been stated that rope tension is the function of a machine 

movement regime [20] and machine’s parameters [21] (some of them may be non-

linear [22]). 

Researchers in the mentioned works used mathematical models based on 

ordinary [19] and partial [17] differential equations.  

In the article [18] correlation between rope tensions, fretting and fatigue 

parameters was established. The results of the investigation [23] show the danger of 

collision between two adjacent ropes. It is caused by large axial fluctuating 

displacements of head sheaves. Dangerous dynamic loads in the mine hoisting rope 

are also connected with its internal spiral components [21]. In the work [24] the 

connection between the dynamic loads and safety of exploitation of shafts has been 

researched. 
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In the analyzed works only peak (maximum and minimum) values of the rope 

tension were taken into calculations. The indicators which reflect the overall load (for 

instance, the root-mean-square value) during the transient regime have not used. 

Moreover, the loads in other elements of a mine winder are still unstudied. 

There are many scientific works in which mine winder control problems have 

been studied. For these purposes use classical [25] and non-classical [26, 27] methods 

of automatic control theory. They allow to obtain a control of the mine winder final 

(terminal) load movement. It is notable that in the work [27] the problem statement of 

the mine winder optimal control has been shown. But its solution has not given. In 

the article [28] the speed curve of the mine hoist has been obtained. It is smooth and 

piecewise. Obviously, the character of the speed curve is attended with a low level of 

dynamic loads which is desirable. 

In conclusion, it is necessary to mention the works [29, 30] in which the 

implementation of a mine winder control has been studied. The state-of-the-art 

approach in such a field is using the programmable industrial controllers with specific 

communication channels and protected sensors. 

Nowadays, a mine winder, as well as other lifting machinery [11], is a complex 

mechatronic system. The movement control of a mine winder is connected with 

industrial controllers using. These devices can be programmed by some means or 

other. The software of a mine winder control system should include the optimal (in 

some sense) laws of its motion. The implementation of the optimal laws can be 

performed with the high-capacity frequency inverters.  

Thus, the main problem at the stage of the previous calculation of the mine 

winder motion regimes is a selection of the „right” optimization criterion and the 

effective method for a problem solution. 

The general approach to improvement of a mine winder operation should take 

into account the processes of different nature (dynamic, energy, electrical, and 

information). That broad problem statement allows obtaining the increasing of mine 

winder efficiency by mean of rational changing of its construction and/or control 

system software. However, the carried out analysis showed that deep studies of mine 
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winders considered the effects which are caused only a few factors. It is desirable to 

study the mine winder movement from the regime and the parametric perspective.  

Moreover, the results which will be obtained should be compared with the 

results of known scientific works and the best practice. 

The objectives of the current work are improving the mine winder operation 

efficiency during deceleration of the final load lowering due to regime-parametric 

optimization and study the obtained results with dynamic and energetic indicators. 

In order to carry out the study, we have used a mine winder dynamic model, 

which is described in the previous study (fig. 1.1). 

The mathematical model, which meets the mine winder dynamic model, can be 

presented in the form of three differential equations (1.1). 

The important part of the research is the choice of the optimization criterion. 

We have chosen the complex – integral-terminal – criteria Cr, which can be 

presented in the following form: 

 

 

(1.10) 

 

 

where Т – duration of the system deceleration to the quiescent state; δ1, δ2, δ3 and δ4 – 

coefficients, which reduce the respective components to dimensionless form and 

determine the importance of each of the components in the criterion structure; M
  – 

coefficient, which reduces the terminal criteria Ter0 and TerT to the dimensionless 

form. 

Minimization of terminal criteria Ter0 and TerT allows avoiding the „soft” force 

interaction between the mine winder transmission elements. 

Minimization of the expression at δ1 causes increasing in energy efficiency of 

the mine winder drive and dynamic loads in the machine decrease as well. The 

components at δ2 and δ3 reflect the force in the rope and torque in the coupling 

respectively.  
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The expression at δ4 shows the rate of the drive torque changing. Its 

minimization is required under conditions of the normal operation of the mine winder 

drive. 

All the coefficients can be presented as follows: 

 

 

 

(1.11) 

 

 

where k1, k2, k3 – weight coefficients which show the significance of the 

corresponding components at the criterion Int structure; P – rated power of the mine 

drive; v – the constant final load motion speed. Criteria (1.10) may be presented in 

another form: 

 

 

 

 

(1.12) 

 

 

 

 

where A0…A3 and B0…B2 – constants which are determined as follow: 

 

 

 

(1.13) 
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The boundary conditions of the system follow: 

 

 

(1.14) 

 

 

where s – the distance which the load passes during the deceleration regime. The 

boundary conditions (1.14) can be expressed through higher derivatives of х(t) by 

time, whereby we have obtained: 

 

(1.15) 

 

The analysis of the expressions (1.12) and (1.15) shows that taking into 

calculation the extra boundary conditions: 

 

(1.16) 

 

allows meeting the absolute minimums of the terminal criteria Ter0 and TerT. 

In work [16] we have found that the integral criterion of seventh order (the 

highest derivative of the function x(t) in the integrand) cannot be used in order to find 

the exact solution of the optimization problem. It connected with the fact that the 

characteristic equation of the Euler-Poisson’s equation is fifth-order. It is impossible 

to find the solution of that kind of equation [13]. 

We can only find the approximate solution of the problem (1.10)-(1.15). We 

will use Euler’s direct variation method [31]. In order to find the approximate 

solution, we have to use discrete values of the functions. 

Moreover, the approximate solution should be found in conjunction of the 

regime and parametric domains. It allows obtaining a minimum of the criterion (1.11) 

compared with the value obtained only in the regime domain. In the study we have 

used the simplest approximation of the derivative: 
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(1.17) 

 

if the remainder ti-ti-1 is sufficiently small.  

In expression (1.17) symbol n means the order of derivative by time and i – is 

the index which corresponds to the discrete moment of time ti. So, we will consider 

the discrete function xi(ti) (in the subsequent the notation xi will be used). Discrete 

function xi must meet the conditions, which can be obtained from boundary 

conditions (1.15) and (1.16). These conditions are as follow: 

 

 

 

 

 

 

 

(1.18) 

 

 

 

 

 

 

 

where N – the number of the discretization steps; Δt – the time step i.e. the distance 

between nearest-neighbor moments at the discrete-time axis (values N, Δt and T 

connected with following expression Δt=TN-1). The system of algebraic equations 

(1.18) allows finding the fourteen values x0, ..., x7, xN-8, ..., xN-1. 
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Using the discrete values of the function x(t) allows to formulate the next 

optimization problem – it is necessary to find the N-14+2 unknown values, which 

minimize the Riemann sum: 

 

 

 

 

 

 

(1.19) 

 

The two extra values which minimizing the SumInt are s and cϕ. 

For numerical calculation, the parameters of the mine winder were used as they 

are in the previous calculations. The regime parameters assumed are following: Т=4 

s; v=12 m/s; k1=k2=0.4; k3=0.15. These weight coefficients are assumed on a 

compromise basis. The significance of the corresponding components in the criterion 

(1.12) was taken into consideration as well. 

The stated problem has been solved with the differential evolution method 

[32]. As a result, the values x8, ..., xN-8, s, and cϕ were found. The optimal values of s 

and cϕ are s=vT2-1 and cϕ=1.55∙109 Nm/rad. 

The basic construction of the mine winder has the coupling with reduced 

coefficient of stiffness which is equal to 1.2·109 Nm/rad. Thus, within the framework 

of the study that value of the coefficient cϕ is not optimal. 

The drive of the considered mine winder includes the high voltage 

asynchronous motor with phase rotor АКН-2-16-39-12УХЛ4 (rated-power output is 

500 kW). The mine winder drive can work in braking mode (regenerative braking). It 

is possible due to the state-of-the-art inverters (they act as the mine winder drive 

power source) [33]. 

In order to illustrate the main characteristics of the optimal law of the mine 

winder motion their plots have been built (fig. 1.4). As the optimal law is discrete 
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function xi we have found the discrete function of angular velocity, drive power, rope 

force, and coupling torque. Then we built the third-order spline functions of the 

mentioned characteristics (fig. 1.4). 

 

a) 

 

b) 
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c) 

 

d) 

Fig. 1.4 Diagrams of mine winder motion characteristics during its deceleration: 

a) drive power; b) torque in the flexible coupling; c) drive angular velocity; d) force 

in the rope 
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We should notice that all diagrams are smooth. Moreover, the increasing and 

decreasing of the functions near initial and final moments of time are very slow. It is 

the result of the minimization of the terminal criteria Ter0 and TerT. The advantages 

of that approach to problem solving will be shown in the following. 

The residual oscillations of the coupling and the load (skip) do not exist. That 

means that dynamic forces in the rope and coupling after deceleration are minimized 

and (as consequence) the operation life of the mine winder will increase. 

As has been noted above, modern inverters can implement the diagram of the 

deceleration torque. They might implement other shapes of deceleration torque as 

well. In order to carry out the comparative analysis, the different shapes of 

deceleration torque were selected. They are: constant, triangle-shaped, trapezium-

shaped, U-shaped, and S-shaped. The following calculations were carried out for two 

cases (fig. 1.5): 1) the deceleration torque is constant (130 kNm) and the deceleration 

duration is variable; 2) the deceleration torque is variable and the deceleration 

duration (4 s) is constant. These constant values selected as the parameters of the 

found optimal law. 

 

a) 
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b) 

Fig. 1.5 Diagrams of drive deceleration torque shapes which selected for comparative 

analysis: a) for the first case; b) for the second case 

 

The variable values for each deceleration torque law and for each case were 

calculated on the basis of the mine winder braking. 

The diagrams of the deceleration torque for both cases have been shown in fig 

1.5. In fig. 1.5 (a) assumed that increasing and decreasing duration is equal to 1.1 s. 

These durations for optimal law of deceleration torque is about the same. 

The results of carried out calculations are in Table 1.1. The biggest values are 

marked with gray, and the smallest ones – with bold. Comparing analysis of the 

coupling torque allowed to state: using the optimal control is the best way to reduce 

the load in this element of the mine winder transmission. The reduction of unwanted 

dynamic loads is within 15.4...82.7%. 

The maximum of the load in the rope is not big. It is equal to the value which 

corresponds to triangle-shaped deceleration torque. But for the last case the duration 

of the deceleration almost in one and a half times bigger. The reducing of unwanted 

dynamic loads in the rope for all considered deceleration torque laws is up to 28.4%. 
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Table 1.1. The dynamic and energetic indicators which correspond to different laws 

of the deceleration torque 
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Optimal 4.00 130.0 1.43 1.41 1.46 427.0 57.0 116.0 
do not 

exist 

The first case 

Constant 2.89 

130.0 

1.56 1.81 2.44 459.9 61.7 133.9 

exist 

Triangle-

shaped 
5.86 1.15 1.41 2.41 397.8 52.3 122.0 

Trapezium-

shaped 
4.05 1.28 1.42 2.45 426.1 56.7 130.8 

U-shaped 4.19 1.33 1.44 2.46 419.4 56.0 129.7 

S-shaped 3.60 1.35 1.48 2.48 436.9 58.1 133.7 

The second case 

Constant 

4.00 

116.9 1.41 1.57 2.31 416.7 55.9 124.3 

exist 

Triangle-

shaped 
151.3 1.25 1.65 2.66 421.8 56.2 129.9 

Trapezium-

shaped 
131.6 1.29 1.44 2.47 427.4 56.7 131.0 

U-shaped 126.8 1.33 1.44 2.44 413.9 56.3 131.1 

S-shaped 131.5 1.36 1.46 2.47 422.1 56.4 130.4 

*RMS is a root mean-square value 

 

Thus, the optimal law shows advantages in terms of reducing the dynamic 

loads in elements of the mine winder. The energetic indicators show that the optimal 

law of the deceleration torque does not case the decreasing of the unwanted energetic 

losses. In the study, we have not used the energy component of the criterion (1.12). 



CHAPTER 1 

32 

Thus, the energetic indicators have not improved compared with taken in the 

calculations laws of the deceleration torque. 

Summing everything up, we have stated: the main factors for the mine winder 

dynamics are the regime duration and the character of the increasing and decreasing 

of the deceleration torque [34]. 

 

1.3 Energy optimization of mine winder acceleration mode 

 

An important problem of the mine winder exploitation is to provide high 

energy efficiency [35]. This problem is becoming increasingly urgent because of the 

constant increase of the cost of electricity tariffs. The variable energy losses of the 

electric engines of the hoisting machines are one of the main factors, which can be 

minimized and provides improvement of the cycle efficiency of the machine [36]. 

Intensive and long-lasting exploitation of the mine winder with high cycle efficiency 

allows increasing the mining profitability. 

One of the important aspects connected with the energy efficiency of the mine 

winder exploitation is the long-term work of its elements. Electrical losses in the 

mine winder drive cause the electrical motor winding heating and deterioration of the 

drive electrical insulation. It, in turn, reduces the durability of the machine’s electric 

drive. 

The requirement of the mechanical elements (coupling, wire rope) durability is 

connected with the level of the dynamical forces they bear. The minimization of this 

level is an important issue to investigate. 

One of the ways to increase the energy efficiency of the mine winder is to 

optimize its parameters and operating modes. Investigations, which have been 

conducted in the work [37], are connected with the optimization of the mine winder 

drum weight (its strength remained on the same level). In the article [38] with the use 

of a finite-element method, an approach concerning the optimal configuration of 

machine’s drive has been developed. The similar research, which is presented in the 

work [39], allows reducing the concentrations of the local stresses of the mine winder 
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drum. It provides the ability to reduce the weight of the drum and the probability of 

cracks in it. In the work, for optimization purposes, the special software OptiStruct 

has been used. 

The problem of optimal reliability of a main-shaft device of a mine hoist was 

investigated in the work [40]. The authors identified the most significant factors that 

affect the reliability of the mechanism. In addition, the universal method, which 

allows obtaining an optimal construction of the main-shaft device of a mine hoist, has 

been developed. 

In the article [34] the solution of the mine winder optimization problem has 

been found. The search domain was a conjunction of the mine winder motion modes 

and parameters’ domains. The criterion of optimization was integral-terminal 

functional, which reflected undesired dynamic indicators of machine’s exploitation. 

Such an approach allowed improving the dynamic and energetic indicators of the 

machine during its design and exploitation. 

In the research paper [41], the problem of a few mine hoisting machines 

scheduling is formalized. The consumed energy is used as a criterion. Using the wide 

range of mathematical methods authors have obtained an approximate problem 

solution. However, the problem of optimization of each mine winder is unsolved. 

Currently, the unsolved problem in the field of the high energy efficiency of 

the mine winder is the synthesis of such laws of its motion that would enable to 

minimize the energy consumption while providing the minimum dynamic loads in its 

elements. Results, which have been obtained in the previous studies, allow improving 

the construction of hoisting machines or their particular dynamics or energetic 

efficiency indicators. 

Mine winders are characterized by oscillatory features [42, 43]. That is why 

energetic optimal control of the mine winder motion should be found with the 

imposed conditions of the elimination of its elements oscillations. Such a problem 

must be solved by using effective mathematical methods that ensure the 

requirements. 
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Thus, the complex increasing of energetic and dynamic indicators of the mine 

winder is an unsolved scientific and practical problems. The solution of the 

mentioned problem provides high reliability and energy efficiency of the mine 

winder. 

In order to perform optimization of the mine winder motion, its characteristics 

should be taken into account. It is rational to consider the machine’s movement at 

three stages: acceleration – steady motion – deceleration. In the statement of the 

optimal control problems of the machine’s motion, characteristics of the transient 

mode (acceleration or deceleration) and direction of the final load movement are 

related to the boundary conditions of the machine elements. 

This investigation explores the acceleration of the mine winder during the 

hoisting of the final load. However, the approach developed in the research may be 

used for optimization of other modes of machine’s motion. 

The goal of the investigation is to increase energetic features of the mine 

winder acceleration during the final load hoisting due to its optimization and analysis 

of the obtained results in terms of energetic and dynamic indicators. 

In order to synthesize the optimal acceleration mode of the mine winder, we 

have used a dynamical model (fig. 1.1). The mathematical model, which is related to 

the machine’s dynamical model, is presented in the form of a system of three 

differential equations (1.1). Note, that it is very common to use differential equations 

in the simulation of technical systems [44]. This statement may be applied to the 

hoisting machines as well [45]. 

All numerical parameters which are in the equation system (1.1) are reduced to 

rope drum. The point above the symbol means differentiation by time. 

Note, that the mathematical model of the mine hoisting machine (1.1) reflects 

the oscillations of the drive elements and the final load. That is why the synthesis of 

energetic optimal laws of the hoisting machine with the differential equations (1.1) 

allows to eliminate the oscillations of these elements, decreases the level of the 

dynamical loads, and provides high reliability of its exploitation. 
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In order to carry out the optimization of the energetic characteristics of the 

mine winder, the criterion should be chosen. Within the framework of the current 

study we chose an integral criterion: 

 

(1.20) 

 

where Т – duration of the machine acceleration to the steady velocity; Pdr – 

machine’s drive power. 

Criterion (1.20) reflects the root-mean-square value of the consumed power of 

the mine winder drive during its acceleration. Minimization of its criterion allows 

obtaining a mode of acceleration with a low level of energy losses. Criterion (1.20) is 

a non-linear integral functional. With the consideration of the system of differential 

equations (1.1) it may be presented as follows: 

 

(1.21) 

 

where A0…A3 and B0…B2 – coefficients, which may be defined as follows: 
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For an optimal problem statement, the boundary conditions of the machine 

elements movement should be set. They are presented in the following form: 
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where s – distance, which the load passes during acceleration mode. Initial conditions 

(1.23) mean that the dynamical system begins to move from a quiescent state. Final 

conditions (1.23) relate to the steady-state movement of the machine (its steady 

velocity is v), and oscillations of the elements are absent. The last factor provides 

reducing of the dynamical loads in the elements of the mine winder after its 

acceleration. 

We have expressed the boundary conditions (1.23) in terms of function’s х(t) 

higher-order derivatives: 

 

(1.24) 

 

Thus, the problem of optimal acceleration mode of the mine winder (1.21), 

(1.22), (1.24) is a variational one. In order to find its solution, a necessary condition 

of criterion (1.21) minimum has been stated. It is the Euler-Poisson [13] equation, 

which is a non-linear differential equation of twelfth order (it is very large and that is 

why we have not presented it here). It is impossible to find the analytical solution of 

this equation. The numerical solution of the boundary problem (1.21), (1.24) does not 

bring the desired result: the change of a parameter of the system causes the need for a 

new solution of the problem. 

In order to find an approximate solution of the variational problem (1.21), 

(1.22), (1.24) we used a class of the continuously differentiable functions. In the 

class, we set basis function, which meets the boundary conditions (1.24) and includes 

an unknown parameter. Such function may be found as a solution of the following 

boundary problem: 
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where ха.1 – the first basis function, which is used as an approximate variational 

problem (1.21), (1.22), (1.24) solution. Let us set more boundary problems. Their 

solutions we will used for the same purpose – to find the approximation of the exact 

solution of the variational problem (1.21), (1.22), (1.24). They are: 
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where хb.2, хb.3, хb.4, хb.5 – the second, third, fourth, and fifth basis functions; q1 and 

q2 – unknown values of the function’s x(t) sixth order derivative at t=0 and t=T, 

which should be found. 

Let us explain the selection of such specific boundary conditions in the 

boundary problems (1.26)-(1.29). The higher orders of the function x(t) derivatives in 

the moment of time T/2 are equal to zero. For that, using the system of differential 

equations (1.1), we have written the angular acceleration of the first system’s reduced 

element (the element with the moment of inertia J1): 

 

(1.30) 

 

The analysis of the boundary conditions, which are presented in the boundary 

problems (1.26)-(1.29), allows setting following expressions: 

 

 

(1.31) 

 

 

where ϕ1.b.3, ϕ1.b.4, ϕ1.b.5 – the angular coordinate of the first reduced element of the 

dynamic system, which corresponds to the third, fourth, and fifth basis function 

respectively. 

Kinematic characteristics (1.31) of the reduced element motion laws provide 

the desirable feature: at the moment of time T/2 the torque of the inertial force, which 

influences the element J1, equals zero. It cases the less severe energetic and dynamic 

conditions of the mine winder drive work. The third and the fourth derivatives of the 

function ϕ1 (the second and the third expression in the system (1.31)) provides some 

„continuation” of this feature in time. 

Solutions of the boundary problems (1.25)-(1.29) (basis functions) include free 

parameters that can be used to find the minimum of the criterion (1.21). In order to do 

that, we need to find the higher derivatives of the basis functions and substitute them 
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into the integrand of the criterion (1.21). By performing such mathematical 

transformations we obtain the following dependence: 

 

(1.32) 

 

where р – a vector of basis functions хb.1, хb.2, хb.3, хb.4, хb.5 free parameters. For the 

cases, which correspond to the boundary problems (1.25), (1.27)-(1.29), the vector 

reduces to a scalar р=s. For the basis function ха.2 the vector can be presented as 

following р=[s, q1, q2]
T. 

Taking the derivative of criterion (1.21) by the components of the vector p and 

equating the obtained result to zero, we will find the necessary conditions for the 

criterion (1.21) minimum. For the basic functions, which are solutions of boundary 

problems (1.25), (1.27)-(1.29), such an equation has the form of a cubic equation: 

 

(1.33) 

 

where α0,…,α3 – coefficients of the equation defined in terms of coefficients A0…A3 

and B0…B2, parameters Т, v and coefficients of the basis functions хb.1, хb.3, хb.4, хb.5. 

Analysis of the roots of the equation (1.33) shows, that for any (real) values of 

parameters Т, v and coefficients A0…A3 and B0…B2 only one root is real. Two other 

are complex numbers. Taking into account physical concerns, we will choose the real 

root of the equation (1.33): 

 

(1.34) 

 

For the basis function, which is a solution of the boundary problem (1.26), the 

calculation of derivatives with respect to the vector р components leads to the system 

of nonlinear algebraic equations. It is impossible to find analytical solutions of the 
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of the expression, (1.32), as the function of the arguments s, q1, q2. That method 

corresponds to the soft calculation techniques, which have been used for calculation 

of the mine winder modes [47].  

All the calculations have been carried out for the values of the mine winder, 

which are used in the previous investigations. In the calculations, the following 

parameters have been used: Т=4 s; v=12 m/s. The obtained optimal values of the 

mode’s parameters are s=24 m, q1=q2=711 m/s6. 

Substitution of the obtained results in the expressions of the basic functions 

хb.1, хb.2, хb.3, хb.4, хb.5 leads to the laws of the final load movement, which minimize 

the value of the criterion (1.21). We denote these as suboptimal laws. Using the 

system of equations (1.1) and suboptimal laws of load motion, the expressions of the 

kinematic, dynamic, and energetic characteristics have been found. 

In order to illustrate the obtained characteristic of mine winder motion, the 

plots have been built. They are shown in fig. 1.6. 

The black plots in fig. 1.6 correspond to the function хb.1, gray plots – to the 

function хb.4. In fig. 1.6 all the graphical dependencies are continuous. It provides the 

reduction of the dynamical loads in the elements of the mine winder. 

   

a)      b) 
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c)       d) 

Fig. 1.6 Plots of mine winder motion characteristics during its acceleration: a) drive 

power; b) drive angular velocity; c) torque in the flexible coupling; d) force in the 

rope 

 

Residual oscillations of the elements do not exist. It is a desirable feature as the 

dynamical loads during steady-state movement of the machine do not exist as well. 

Such characteristics increase the coupling and wire rope reliability. 

Analysis of the graphical dependencies shown in fig. 1.6, reveals, that the 

important factor affecting the maximum loads in the mine winder elements are the 

features of the basis functions that have been used for finding suboptimal solutions of 

the variational problem. Selection of the specific features (in the frame of the current 

investigation such features were reached by adding the special boundary conditions in 

the boundary problems (1.27)-(1.29)) allows obtaining desirable characteristics of the 

mine winder movement. These characteristics are manifested in a significant 

reduction of the maximum values of the forces and torques in the machine’s 

elements. 

In order to estimate the obtained approximate solutions of the initial variational 

problem, we have used energetic and dynamic indicators. We have conducted the 

evaluation with root-mean-square values and the ratios of the maximal values. All 

these indicators reflect the undesirable features of the mine winder movement. 
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Calculated data are given in Table 1.2. The smallest values are highlighted in 

bold. Note, that the last column of Table 1.2 is related to the value of the optimization 

criterion (1.21). 

Analysis of data in Table 1.2 shows that the worst energetic and dynamic 

features has suboptimal motion law, which corresponds to the basis function хb.1. The 

law of motion founded with the help of basis functions хb.4 and хb.5 have the best 

features. In that sense, functions хb.4 and хb.5 are similar. Thus, a further complication 

of the basis function (i.e. adding extra boundary conditions in the middle of the 

acceleration interval) to obtain a more precise solution to the optimal problem is not 

expedient. Thus, in order to control the mine winder movement, we may recommend 

using the suboptimal law, which corresponds to the basis function хb.4. 

Table 1.2. The energetic and dynamic indicators which correspond to suboptimal 

control laws of the mine winder motion 

Basis 

function used 

in 

suboptimal 

motion law 

calculation 

Dynamic response 
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maximum 
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хb.1 1.75 1.46 1.93 1.37 57.6 103.4 122.7 442.9 

хb.2 1.53 1.33 1.66 1.34 57.1 103.0 121.3 434.6 

хb.3 1.48 1.29 1.60 1.33 56.9 102.9 120.8 430.9 

хb.4 1.42 1.25 1.52 1.33 56.7 102.7 120.3 425.6 

хb.5 1.42 1.25 1.52 1.33 56.7 102.7 120.3 425.6 

* RMS – root-mean-square value 

 

The analysis of the data in Table 1.2 shows that the drive power maximum 

ratio varies in a narrow range. The same applies to the root-mean-square values of 

wire rope force, coupling, and drive torques. 
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The root-mean-square value of the drive power for different suboptimal modes 

differs only on 4.0% 

Dynamical response factors of the rope, the coupling, and the drive depend on 

features of the suboptimal laws of the hoisting machine. For example, the coefficient 

of the rope, which is related to the basis function хb.4, on 23.2% less than the similar 

indicator for the basis function хb.1. The dynamic response factors of the coupling for 

these laws vary on 16.8%, and for the drive on 27.0%. These data support the 

previously made conclusion regarding the rationality of using suboptimal law of the 

mine winder motion, which is based on the basis function хb.4 [48]. 

 

 

Conclusions to сhapter 1 

 

1. For better performance of the mine winder, the drive motor rheostat control 

should be replaced by the frequency inverter that implements the optimal machine 

acceleration (deceleration) characteristics. Under similar conditions, the optimal 

control allows to reduce the dynamic loads of machine components up to 22.5-84.0%, 

as well as to minimize peak values of the drive motor power consumption [16]. 

2. The impact of acceleration duration Т and coefficient δ1 in the criterion 

(1.2) the on the dynamic and energetic indicators of mine winder operation was 

found. Such a result allows reasonably to implement the obtained optimal 

acceleration mode of the mine winder and to configure the appropriate settings based 

on the requirements for improving the machine’s operational efficiency [16]. 

3. In the study has been shown that the problem of increasing the dynamic 

performance of the mine winder is complex. Thus, its solution should be found in the 

complex domain. Such a domain within the framework of the study was the 

conjunction of regimes’ and parameters’ domains of the mine winder [34]. 

4. The implementation of the mine winder optimal control allows increasing 

the machine’s dynamic performance. In turn, it makes the operation life of the 

machine is longer. The found in the study optimal value of the reduced coefficient of 
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the coupling stiffness may be useful during the mine winder design process. The 

complex approach to optimization of the mine winder deceleration has shown its 

efficiency [34]. 

5. The executed investigation develops an approach of increasing the 

energetic efficiency of the mine winder. It is applied to the acceleration mode of the 

mine winder. It can be generalized to other transient modes of the machine 

movement: deceleration during hoisting or lowering the final load, and acceleration 

during lowering of the final load. In the work, in order to find the approximate 

solution of the optimal control problem (based on energetic criterion), the 

continuous-differentiable class of functions has been used. They have a priori set of 

specific characteristics, which allowed eliminating the residual oscillations of the 

machine elements at the end of the acceleration and provide decreasing of 

undesirable maximal values of forces and torques in the elements of the mine winder. 

It, in turn, improves the energetic indicators of the machine exploitation. Calculation 

of the suboptimal laws of the mine winder motion (except one basis function) has 

been carried out in the analytical form [48]. 
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CHAPTER 2. AGROTRONICS AND OPTIMAL CONTROL  

OF TOWER CRANE MECHANISMS 

 

2.1 Dynamical analysis of the tower crane slewing mechanism (the case of 

the steady velocity of the crane trolley) 

 

Tower cranes are widely used in many areas of the modern industry. They are 

especially often used in the construction of civil engineering objects. The tower crane 

slewing mechanism is one of the main. Its effective exploitation is connected with the 

dynamical and energetic processes that occur during transient modes of mechanism 

motion. The considerable dynamic loads that take place in shafts, toothed gears, 

clutches, etc. harm the life duration of the mechanism. In addition, one of the 

important issues for research is the energy efficiency of the crane slewing drive 

mechanism. These and other factors cause the need to study the dynamic and energy 

processes in the crane slewing mechanism. Previous studies have found that they 

have the greatest impact during transient modes of motion. 

Moreover, we specify a factor that harms the crane performance ‒ the load 

oscillations on a flexible suspension. In the case of crane’s slew, the load oscillations 

occur in the plane of trolley motion and perpendicular to it. In order to develop 

methods for their elimination, it is necessary to conduct the study and establish the 

basic laws of their origin and evolution. 

In the scientific work by Vaynson A.A. [1] the calculation of dynamic loads 

during the operation of the crane slewing mechanism is performed on the basis of a 

dynamic model with reduced masses. The integration of the corresponding 

mathematical model under constant driving force and from zero initial conditions 

allowed to obtain an expression for determining the elastic torque in the crane 

slewing mechanism. Its analysis allowed the author to make recommendations for 

reducing dynamic loads in crane elements: it is necessary to increase the inertial 
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features of the drive and to reduce the excess torque (force) of the drive mechanism. 

The first method constructively lies in the insertion of the flywheel to the kinematic 

chains. This leads to an increasing of the duration of the start-up of the mechanisms, 

which affects the mechanism’s energy indicators. Therefore, the rational way to 

ensure an acceptable level of dynamic loads at low energy consumption in the drive 

is to control its excessive torque.  

In the research of Gaidamaka V.F. [2] the expression of determining the 

maximum dynamic loads is carried out in the same way: first of all, a dynamic model 

of the mechanisms has been built, equations of motion of the system reduced masses 

have been found, and then the equations have been integrated at zero initial 

conditions and the constant of the driving factor (torque or force). The difference in 

calculations with previous work lies in the torque which is created by the friction 

forces, the crane tilt, and wind. Aside from this, Gaydamaka V.F. did not take into 

account the effect of centrifugal force in the calculations. 

In the work of Scheffler M., Dresig H. and Kurt F. [3] the emphasis is on 

establishing the magnitudes of the deviation of the load from the vertical in radial and 

tangential directions. This approach is approved due to the fact that in many 

calculation methods of the tower cranes elements it is necessary to know the values 

of the angles of deviation of the load from the vertical. The authors have compared 

the results of their researches with already known works. 

In general, the approach of determining the dynamic loads at which the driving 

force is assumed as constant is quite simplistic. It does not reflect the features of the 

mechanical characteristics of the drive mechanisms, which in many cases are a 

significant factor in the study of the dynamics of the mechanisms of the crane’s slew 

and the trolley movement. 

Gohberg M.M. in work [4] indicated the combinations of load actions that 

should be used in the calculations of tower crane mechanisms: self-weight, load 

weight with the gripping unit, inertial loads, tilt forces, forces caused by wind loads, 

as well as mounting and transport loads. The author points out that in the case of the 
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low angular velocity of crane’s slewing, it is permissible to use expressions related to 

the dynamics of two-mass systems described in the works [5, 6]. 

One of the important factors that determine the dynamic loads in tower crane 

elements is the load oscillations on a flexible suspension. Such oscillations are 

complex and occur in radial and tangential directions. In addition, they cause 

difficulty in load positioning. Their elimination is quite a difficult problem, which 

experienced crane operators cope with by constant monitoring of the crane 

movement. In order to establish the main factors that influence their appearance, it is 

necessary to synthesize mathematical models of the motion of the tower cranes 

mechanisms. 

In [7, 8], a mathematical model of a crane’s boom (jib) system with two 

freedom of freeness was developed. The authors examined the uniformly and 

uniniforly accelerated tilt of the guide link (crane’s boom). Nonlinear models have 

also been used to study oscillations on a flexible suspension [9]. 

In [10], the dynamics of a tower crane under the condition of pendular load 

oscillations (they are modeled as linear) was investigated. The construction of the 

tower crane is described with the finite element method. Dynamic load analysis was 

performed using an author-developed approach based on the numerical method. It 

was established that the crane metal structure is the most responsive to the influences 

which have the frequencies of the first several harmonics of metal structure 

oscillations and load oscillations as well. In addition, dynamic loads tend to increase 

as the angle of pendulum (load) deviation increases. 

In [11], a crane rotation simulation was performed based on the Euler-

Lagrange equations. The analysis of the obtained results made it possible to trace the 

nature of the pendulum oscillations of the load on a flexible suspension and to 

compare them with the results of experimental studies in order to minimize the load 

oscillations, authors have come up with a method for controlling the driving torque of 

the crane slewing mechanism. 

In the scientific work [12] the influence of pendulum load oscillations on 

mechanical stresses of crane metal structure for different modes of its motion was 
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investigated. On the basis of the analysis, the author made a recommendation for the 

positioning of the trolley on the boom in the conditions of wind rushes for reducing 

the risk of the emergency crane collapse. 

The purpose of the current work is to establish the level of dynamic and energy 

loads of the tower crane slewing mechanism, as well as to study the load oscillations 

on a flexible suspension. In order to achieve this goal it is necessary to solve the 

following problems: 1) to develop a dynamic model of the tower crane slewing 

mechanism; 2) to synthesize a mathematical model, which is suitable for research, by 

using second-order Lagrange equations; 3) to analyze the dynamic and energy loads 

of the tower crane slewing mechanism; 4) to investigate the appearance and evolution 

of the load oscillations on a flexible suspension and to determine the main factors that 

affect them. The tower crane during the process of the start of the slewing mechanism 

in the steady-state mode of trolley movement is presented as a holonomic mechanical 

system (fig. 2.1), which consists of absolutely rigid bodies, except for load flexible 

suspension, which oscillates in the vertical plane during crane slewing. In the selected 

dynamic model of the crane, we have generalized coordinates. They are: angular 

coordinates of the crane φ and the load ψ slewing, as well as the linear coordinate of 

the load movement x. 

 

Fig. 2.1 A dynamic model of the tower crane slewing mechanism 
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For such a dynamic model, we have defined the deviation of the rope from the 

vertical. In this case, we assume that the deviation of the rope from the vertical is 

negligible and does not exceed 12°. Therefore, the arc load movement during its 

oscillations is replaced by straight lines. As a result, we have the next expressions: 

 

      (2.1) 

 

    (2.2) 

 

  (2.3) 

 

where t is time; v is the steady linear speed of the trolley movement. For expression 

(2.3) we found ∠ABC: 
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As a result of substituting dependencies (2.1), (2.2) and (2.4) into expression 

(2.3) we obtained: 
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For the model represented by the dynamic model shown in fig. 2.1, we should 

use the Lagrange equations to find the corresponding mathematical model: 

 

 

 

   (2.6) 

 

 

where T, П ‒ is the kinetic and potential energy of the boom system, respectively; Qφ 

is a non-potential component of the generalized force that corresponds to the 

generalized coordinate φ of the crane’s slew. 

The potential energy of the boom system is as follows: 
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where m1, m – reduced masses of the trolley and the load respectively; g – 

acceleration of free fall. Taking partial derivatives of expression (2.7) with respect to 

the dependence (2.5) of the generalized coordinates φ, ψ, and x, we have: 

 

    (2.8) 

 

    (2.9) 

 

   (2.10) 

 

The kinetic energy of the system is expressed by the next dependency: 
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The nonpotential component of the generalized force, which corresponds to the 

generalized coordinate φ is determined by the following dependency: 
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where Мкр ‒ maximum (critical) torque on the electromotor’s shaft of the crane 

slewing mechanism; u and η are respectively the gear ratio and the efficiency 

coefficient of the crane slewing mechanism; ω0 ‒ synchronous angular velocity of the 

rotor of the electromotor of the crane slewing mechanism; sкp ‒ critical slippage of 

the engine of the slewing mechanism, which is determined by the following 

dependency: 
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where 21 / RRа   ‒ dimensionless parameter, which is the ratio of the resistance of 

the stator R1 to the resistance of the rotor R2′ (all the values are reduced to the stator 

windings); ωном ‒ the nominal angular velocity of the motor; λ is a torque capacity 

(λ=Мкр/Мном); Mном ‒ the nominal moment on the motor shaft. 

After substitution of expressions (2.8)-(2.19) to a system (2.6) we obtain a 

system of differential equations of the start-up of the crane slewing mechanism at the 

steady-state mode of the load trolley motion: 

 

 

 

 (2.21) 

 

 

 

 

The mathematical model will be used in further calculations for carrying out 

dynamic analysis of the slewing mechanism during trolley steady motion. We will 

focus on the start of the system. 

All calculations were made for the parameters of the crane Liebherr 140 hc 

[13], which are shown in Table 2.1. 

Table 2.1. Parameters of the tower crane Liebherr 140 hc 

Parameter 
Unit of 

measurement 
Value 

1 2 3 

Trolley reduced mass, m1 kg 300 

Load reduced mass, m kg 5000 

The moment of inertia of the turnable part of the crane 

reduced to its slewing axis, I0 
kg·m2 5.5·106 
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Table 2.1 continuation 

1 2 3 

The moment of inertia of the rotor of the electromotor of 

the trolley movement mechanism, I1 
kg·m2 0.3 

The moment of inertia of the rotor of the electromotor of 

the crane slew mechanism, I2 
kg·m2 0.056 

The force of static resistance of the trolley movement, W N 5500 

The torque of static resistance of the crane slew, M0 Nm 50100 

The maximum torque on the electromotor shaft of the 

crane slew mechanism, Mкр 
Nm 120 

The dimensionless parameter of the electromotor of the 

crane slew mechanism, а1 
- 0.2 

The dimensionless parameter of the electromotor of the 

crane slew mechanism, а2 
- 0.2 

Critical slippage of the engine of the crane slewing 

mechanism, sкр2 
- 0.37 

The gear ratio of the crane slew mechanism, U2 - 1429 

The synchronous angular velocity of the engine of the 

crane slew mechanism, ω0 
rad 104.7 

The drum diameter of the trolley movement mechanism, 

D 
m 0.3 

The length of the load’s flexible suspension, L m 10 

Efficiency coefficient of the drive mechanism of the 

crane slew, η2 
- 0.80 

 

In order to analyze the tower crane slewing mode with the constant velocity of 

the trolley, we have built some graphical dependencies (fig. 2.2). 
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a)      b) 

 

c)      d) 

 

e)      f) 
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g)      h) 

 

i)      j) 

 

k)      l) 

Fig. 2.2. Plots of the characteristics refer to the system direct start. 
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We have shown graphical dependencies on fig. 2.2 (a) velocity of the trolley 

(grey line) and the load (black line) in the radial direction at х0=3 m; b) the same at 

х0=30 m; c) angular velocity of the tower (black line) and the load (grey line) in the 

tangential direction х0=3 m; d) the same at х0=30 m; e) the phase portrait of radial 

load oscillations at х0=3 m; f) the same at х0=30 m; g) the phase portrait of the load 

oscillations in the tangential direction at х0=3 m; h) the same at х0=30 m; i) the torque 

of the drive mechanism of the tower at х0=3 m; j) the same at х0=30 m; k) the drive 

power of the crane slewing mechanism at х0=3 m; l) the same at х0=30 m) as follows: 

in the left column, the graphs correspond to the case х0=3 m, and in the right one – to 

the case х0=30 m. 

In order to establish the quantitative characteristics of the movement of the 

system, the numerical data were calculated. They were set in Table 2.2. 

Table 2.2 Kinematic, dynamical and energetic characteristics of the system direct 

start 

Parameter 
Unit of 

measurement 

х0 value 

3 m 30 m 

1 2 3 4 

Maximum torque value of the drive of the 

crane slew mechanism 
Nm 137253 

The maximum value of the drive power of the 

crane slew mechanism 
W 6993 

The maximum amplitude of the load deviation 

in the radial direction 
m 0.294 0.336 

Maximum amplitude of load deviation in the 

tangential direction 
rad 0,0501 0,0138 

The root-mean-square value of the drive 

torque of the crane slew mechanism 
Nm 112213 111001 

The root-mean-square value of the power of 

the slew mechanism 
W 4456 4837 
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Table 2.2 continuation 

1 2 3 4 

The root-mean-square deviation value of the 

load in the radial direction 
m 0.00093 0.10744 

The root-mean-square deviation value of the 

load in the tangetial direction 
rad 0.0306 0.0076 

 

Analysis of the graphical dependencies, which are presented on fig. 2.2, and 

the numerical data listed in Table 2.2, shows that the maximum torque and power 

values for the cases x0=3 m and x0=30 m are the same. This derives from the torque 

capacity of the crane slewing mechanism. In addition, practically equal root-mean-

square values of these characteristics can be observed. 

For the case х0=30 m, as we can see from fig. 2.2 (j) and fig. 2.2 (l), the torque 

and power of the slewing mechanism after the end of start are increasing. This is due 

to the fact that with increasing the distance from the trolley to the rotational axis, 

firstly, the moment of the system’s inertia increases, and secondly the angular speed 

of the crane’s slewing decreases. To compensate the speed reduction, it is necessary 

to provide the system with angular acceleration. The product of this acceleration at 

the increasing moment of inertia caused by the increasing value x0 influences the 

engine driving torque. Moreover, the torque increase causes a slight decrease in the 

angular speed of the crane’s slewing (fig. 2.2 (c) and (d)). 

In spite of this, a larger value of x0 causes an increase in the amplitude of the 

pendulum oscillations of the load in the radial direction. Here, the reason for such an 

increasing is the centrifugal force, is proportional to the x0 value. Indeed, as one may 

obtain from fig. 2.2 (f), the load in the course of time deviates more radially from the 

vertical due to the centrifugal force. 

On the other hand, the amplitude of the load oscillations in the tangential 

direction is smaller. It is caused by the fact that in the case of x0=30 m, the slewing 

mechanism duration of the start is much longer (again, this is caused by an increased 
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moment of the system inertia at a larger value of x0). Similar tendencies are observed 

when analyzing the root-mean-square values of the load oscillations in both planes. 

 

2.2 Optimization of the tower crane slewing (the case of the steady velocity 

of the crane trolley) 

 

Tower cranes are widespread used in many sectors of modern industry. They 

are especially often used in the area of civil engineering. The efficiency of their 

operation depends on the load oscillations at the flexible suspension. There are many 

ways of elimination of the load oscillations. Among them is a class of methods based 

on optimal control. They make it possible to use the available reserves as efficiently 

as possible. 

Most of the works referred to optimal motion control of tower crane 

mechanisms used duration of movement on [13-19] and linear-quadratic criteria [16, 

20, 21, 26]. All of these works are characterized by the requirement of elimination the 

load oscillations on a flexible suspension. 

In work [13], the tower crane model is presented as a system of four nonlinear 

differential equations describing the tower's slew, the movement of the trolley on the 

boom, and the oscillation of the load on a flexible suspension in two planes (along the 

trolley's motion and perpendicular to its direction). In the statement of the problem, 

the constraints on speed and acceleration of the trolley, as well as the speed and 

acceleration of the tower were used. To find the quasi-optimal control (by the 

duration criterion), the authors have developed an algorithm that determines the 

parameters of the predefined (basis) piecewise motion functions of the individual 

system’s masses. The results of theoretical studies were tested by means of execution 

of laboratory experiments. However, they did not allow to establish the practical 

applicability of the obtained results. 

In the research [14], where a nonlinear model of the joint action of several 

crane mechanisms (crane slew, trolley movement, and hoisting) was used, constraints 

were imposed on the tower, trolley, and load accelerations. A gradient method was 
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used to find the criterion minimum. This research paper also does not contain the 

validation of experimental research in production conditions, although the theoretical 

and laboratory data have a quite close agreement. 

In scientific investigation [15], authors, based on specialized software, have 

obtained the optimal parameters of tower crane modes movements (tower slewing, 

load hoisting, and trolley movement). The obtained results can be applied only in 

cases of small displacements since the problem is solved in the absence of a steady-

state mode of mechanisms motion.  

In the article [16], authors developed approaches for elimination the load 

oscillations of slewing (including tower) cranes, by using the linear-quadratic 

optimization criterion. The solution of the problem is illustrated by graphical 

dependencies. In addition, the issues of control implementation have been developed 

in this work, in particular, the structure of the controlled drive mechanism has been 

specified. 

Article [17] is devoted to the development of the duration optimal control of 

the crane slewing mechanism based on the applying of the Pontryagin maximum 

principle. By using nonlinear equations of the system’s motion, authors have found a 

solution of the problem. The control function has been found as the acceleration of 

the trolley. It complicates the practical implementation of the work results. 

In the work [18], the same method was applied to optimize the duration of a 

tower crane slew. The linear motion model of the system is used in this scientific 

work. 

In [19], based on the Lagrange equations, a mathematical model of a tower 

crane has been obtained. It is presented in a matrix form and describes the tower 

slew, the trolley movement, the load hoisting and its oscillations in two planes. 

Authors reduced the problem of linear-quadratic functional minimization to the 

system of Riccati equations. However, authors of the work did not explain the 

physics of the used criterion. The results obtained during the calculations were 

analyzed by using graphical dependencies. 
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In the dissertation of A.L. Galafshani [20] developed a mathematical model of 

a tower crane and solved the optimization problem of eliminating the load 

oscillations on a flexible suspension. He considered a condition that the integral 

functional, which reflects the quadratic values of the phase coordinates of the system 

motion, should be minimized. There were imposed constraints on the position of the 

individual masses of the system and their velocities. The analysis of the obtained 

results showed that some of them cannot be implemented on practice. 

Hanafy M. Omar and other researchers in [21, 22] have developed approaches 

to the synthesis of motion controllers for tower crane mechanisms that would allow 

eliminating the load oscillations on a flexible suspension. The numerical calculations 

given in the papers refer only to the parameters of laboratory cranes’ models and do 

not reflect the effect of possible external impacts (for example, wind rushes). It is 

advisable to use these results at the initial stage of the synthesis of optimal controllers 

as a first approximation. 

In the research [23], an approximate solution of the optimal control problem of 

the slewing mechanism of a tower crane has been found. The model, which is used in 

the calculations, is nonlinear with variable parameters (flexible suspension length). It 

has complicated solving of the problem and did not allow finding its exact solution. 

The approaches’ analysis, which was carried out in the paperwork led the authors to 

the conclusion that the impossibility of reducing the mathematical model of the 

system to the normal form did not allow the application of Pontryagin’s maximum 

principle. 

Non-classical controllers (based on fuzzy logic) of control of the tower crane 

slewing and trolley movement have been developed in the paperwork [24]. The 

simulation of the results has shown that the obtained adaptive fuzzy controllers allow 

eliminating the load oscillations. They are quite robust. The influence of the structure 

of the controller, in particular, the number of expert rules, on the control quality was 

also investigated. The obtained results do not allow performing the optimal 

movement of the mechanisms. They are rather universal theoretical developments. 
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In [25], different approaches to elimination of the load oscillations in the joint 

operation of the crane slewing and trolley movement have been analyzed. It is found 

that the implementation of optimal control requires more sensors than other methods: 

PID control, input shaping, and notch filtering. On the other hand, optimal control is 

less sensitive to the incorrect determination of the system parameters, such as the 

length of the flexible suspension of the load. 

In [26], an approach was applied to determine the discrete values of the tower 

crane slewing mechanism control. For this purpose, a modified method of particle 

swarm was applied [27]. As a result, the authors developed a control that minimized 

the complex dynamic criterion, which reflected the root-mean-square value of the 

driving torque and its rate (the time derivative). 

The issues of implementation of optimal tower cranes’ mechanisms control, as 

well as the analysis of modern tendencies in this field, are given in the article [28]. 

Based on a wide analysis of the work, authors have identified two classes of control 

systems: a program control (a function of time) and closed-loop control (a function of 

phase coordinates). They pointed out the advantages and disadvantages of using each 

of the classes. 

Apart from studies on optimization of the slewing control of the tower crane 

mechanism, there are those that reflect developments in optimization of the 

parameters of their mechanisms. In particular, in [29, 30], the optimal range of values 

of the dissipation coefficient of the elastic-damper device was determined on the 

basis of the numerical analysis of the trolley movement. Moreover, in [30] the system 

of equations that describe processes of the trolley movement mechanism by using the 

dynamic mechanical characteristic of the drive is obtained. 

Thus, in most of the works refer to the area of optimal slewing control of tower 

crane mechanism used nonlinear mathematical models. Besides that, theoretical 

calculations and experimental studies have been performed only for the parameters of 

laboratory models of tower cranes. It complicates their implementation in the real 

conditions of operation. 
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The purpose of the presented work is to determine the optimal laws of motion 

of the slewing mechanism of the tower crane during its acceleration. 

To achieve this goal it is necessary to solve the following problems: 1) to 

develop a mathematical model of slewing mode of the system „tower crane - load on 

a flexible suspension” at a constant speed of the trolley movement; 2) to state the 

problem of optimal control of the system movement; 3) to find a solution to the 

problem with ME-PSO method; 4) to analyze the obtained results. In order to 

optimize the movement of the tower crane slewing mechanism at the constant 

velocity of the trolley, we have used the dynamic model, which is shown in fig. 2.3. 

 

Fig 2.3 The dynamic model of the tower crane (the case of a constant velocity of the 

trolley) 

 

We will assume that in this model all links of mechanisms (trolley movement 

and crane slewing) are absolutely rigid bodies, except the load on a flexible 

suspension which oscillates about a fixed point. The presented dynamic model 

(fig. 2.3) with the combined movement of mechanisms is presented as a holonomic 

mechanical system with three degrees of freedom. As the generalized coordinates, we 
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have taken the linear coordinate of the center of mass of the trolley x, as well as the 

angular coordinates of the slewing of the crane φ and the load ψ. 

At the same time, we assume that the linear coordinate x changes according to 

the linear law x=x0+vt (where x0 is the initial coordinate of the trolley position, t is the 

time, v=const is the constant velocity of the trolley movement along the boom). Since 

the law of motion of the mass of the trolley along the boom is given, the dynamic 

model (fig. 2.3) is represented as a mechanical system with two degrees of freedom. 

To compose the equations of the motion of the mechanisms, we have used the 

Lagrange equations: 

 

  (2.22) 

 

 

where T, П are respectively the kinetic and potential energy of the system; Qφ is a 

non-potential component of the generalized crane slew force. The kinetic and non-

potential energy of the dynamic system presented in fig. 2.3, are as follows: 

 

(2.23) 

 

(2.24) 

 

where J0 is the moment of inertia of the slewing part of the crane reduced to the axis 

of its slew; m1, m are the masses of the trolley and the load respectively; l is the 

length of the flexible suspension of the load. Let’s take the derivatives of expressions 

(2.23) and (2.24), which are necessary for the system (2.22): 

 

 

(2.25) 

 

 









































,

;






ПTT

dt

d

П
Q

TT

dt

d



);)((
2

1
))((

2

1

2

1 22
0

222
0

2
1

2
0   vtxvmvtxvmJТ 

),
))((

cos1()cos1( 0
111

l

vtx
mglglmmglglmmgyglmП







;)(

;)(

;0

2
0

2
010















vtxm
Т

vtxmJ
Т

ТТ























CHAPTER 2 

69 

(2.26) 

 

(2.27) 

 

 (2.28) 

 

 (2.29) 

 

As a result of the substitution of expressions (2.25)-(2.29) into the system 

(2.22) and replacement of the generalized force Qφ at the driving torque of the crane 

slew mechanism M (reduced to the axis of the crane slewing), we will obtain 

differential equations of the joint motion of the slewing mechanism and the trolley 

movement mechanism (in a condition of movement of the trolley at a constant 

velocity): 

 

 

(2.30) 

 

The second equation of system (2.30) may be written in the following form: 

 

(2.31) 

 

From equation (2.31) we may express the coordinate φ and find its time 

derivatives: 
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From the first equation of system (2.30), we might express the driving torque 

of the drive: 

 

(2.35) 

 

As the criterion of optimization mode of the movement of the mechanisms we 

have chosen the RMS value of the driving torque of the slewing mechanism: 

 

 (2.36) 

 

where tп is the duration of system acceleration. 

The boundary conditions of the system movement are as follows: 

 

 

 (2.37) 

 

 

where ω – is the angular velocity of the tower slewing. With the help of dependencies 

(2.30)-(2.34) we reduce the angular coordinate φ, velocity, and acceleration to the 

coordinate ψ and its time derivatives. It allows us to rewrite the boundary conditions 

(2.37) and represent them in terms of values of function ψ and its higher time 

derivatives: 
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  (2.39) 

 

where Мном ‒ nominal and maximal drive torque respectively; λ is the torque capacity 

of the drive of the tower slew mechanism; ωmin ‒ the minimum value of the angular 

velocity of the crane slewing during the controlled movement. The condition of the 

minimum of the integral criterion (2.36) is a Poisson equation, which is a nonlinear 

one for the case that is under consideration. The situation is complicated by the 

constraints (2.39). Therefore, to solve the presented optimization problem, we have 

used the ME-PSO method [15]. 

In order to take into account for the constraints (2.39), to minimize the criterion 

(2.36), and to determinate of such a minimum value of the duration tп, where 

requirements (2.39) and (2.36) are met, a generalized criterion was developed: 

 

 (2.40) 

 

where 1
~
rC  and 2

~
rC  – criteria that take into account constraints (2.39); δ1, δ2 are 

weight coefficients that show the importance of minimization of the corresponding 

components (within the framework of this study were set δ1=104 and δ2=106, which 

made it possible to satisfy the conditions (2.39) and to minimize the duration of the 

transient mode of the system movement); δt is the coefficient that reduces the 

dimension of time to the dimension of criterion (2.26). Criteria 1
~
rC  and 2

~
rC  are 

defined by the expressions: 
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where δm and δω – are the coefficients that reduce the dimension of the relevant 

components (drive overload, tower angular velocity) to the dimension of criterion 

(2.36). The essence of the criteria 1
~
rC  and 2

~
rC  is that they are quite large in the case 

when constraints (2.39) are not met. If constraints (2.39) are satisfied, then the criteria 

equal to zero. The basis function that will be used to find an approximate solution of 

the problem was found as the solution of the boundary problem: 

 

 

 

 

(2.42) 

 

 

 

 

where n , n , n

IV

  – acceleration, jerk, and rate of jerk of the load at the moment of 

the end of the controlled mode of the system; 2/nt
 , 2/nt

 , 2/nt
  – position, speed 

and acceleration of the load at a time 
2

nt ; 0

V

  та п

V

  – the fifth derivatives of 

coordinate ψ at the beginning and at the end of the controlled mode of the system 

respectively.  

The solution of the boundary three-point problem (2.42) has a considerable 

volume and, therefore, is not given here. The optimization was performed with the 

parameters of the ME-PSO method and the search domains for the optimal values of 

the arguments are listed in Table 2.3. 

All calculations have been made with the system parameters corresponding to 

the tower crane Liebherr 140 HC [12]: l=10 m; m1=300 kg; m=5000 kg; v=0.84 m/s; 

ω=0.066 rad/s; J0=5.5·106 kgm2. 
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Table 2.3. Parameters of the ME-PSO method, which is used for minimization of 

criterion (2.40) and the argument search domains 

Parameter Value 

Parameters of the ME-PSO method 

Number of iterations 40 

Swarm population 30 

Acceptable rate value 0.05 

The argument search domains 

0

V

  0…1 

2/nt
  0…5ω 

2/nt
  0…ω 

2/nt
  -2.5ω…2.5ω 

n

V

  -1…1 

tn 2…10 

 

As a result of the method applying, values were obtained: 0

V

 =0.1111 rad/s5,   

2/nt
 =0.0632 rad, 2/nt

 =0.0243 rad/s, 2/nt
 =-0.0003 rad/s2, n

V

 =-0.1961 rad/s5 

and the duration of the controlled mode tn=9.99 s for the trolley movement from the 

initial position x0=1.5 m from the tower. For the second case (the movement of the 

trolley from the initial position x0=30 m towards the tower) the following values are 

obtained: 0

V

 =0.0 rad/s5, 2/nt
 =0.0475rad, 2/nt

 =0.0395 rad/s,                       

2/nt
 =0.0165 rad/s2, n

V

 =-0.1609 rad/s5 and the duration of the controlled mode 

tn=8,94 s. To illustrate the efficiency of the algorithm, we present plots of decreasing 

the criterion (2.40) values during performing ME-PSO algorithm (fig. 2.4). 
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а) 

 

b) 

Fig. 2.4 Plots of reducing the value of criterion (2.40): a) the case of the trolley 

movement from the tower; b) the case of trolley movement towards the tower 

 

Graphical dependencies’ analysis shows that determining the optimal values of 

function arguments is performed quite effectively. 



CHAPTER 2 

75 

For the first case, 30 iterations were enough, and for the second one, only 6 

were enough. 

In order to estimate the dynamical features of the found approximate optimal 

laws of the system movement, plots (fig. 2.4) for the second case are built. 

 

а) 

 

b) 
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c) 

 

d) 

Fig. 2.5 Plots of kinematic, dynamical and energetic characteristics of system motion 

for the second case: a) dynamic component of the driving torque; b) the required 

drive power to overcome the dynamic component of the driving torque; c) trolley 

(black line) and load (gray line) positions; d) trolley (black line) and load (gray line) 

velocities 
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Analysis of the plots given in fig. 2.5, shows that they are smooth, which is a 

consequence of the selection of a basis function from a class of continuously 

differentiated functions. All boundary conditions of the system movement, as well as 

constraints (2.39) are satisfied. 

Some numerical characteristics of the optimal laws of motion were calculated. 

They are listed in Table 2.4 (hereinafter all the numerical values of the approximate 

optimal laws of motion of the tower crane slew mechanisms refer to the dynamical 

power components and energetic characteristics). 

Analyzing the values of dynamic, energetic, and kinematic indicators of 

optimal modes (Table 2.4), we may determine that the maximum driving torque, the 

maximum drive power, and the root-mean-square of the drive power for both of the 

cases differ slightly. 

When the trolley is moving from the tower, the load deviations (maximum and 

root-mean-square values) are larger than those that occur when the trolley is moving 

toward the tower. On the other hand, when the trolley is moving to the tower, the 

root-mean-square value of the driving torque is 32% bigger. 

Table 2.4 Numerical values of the optimal laws of motion of the system 

Parameter 
Trolley movement 

from tower towards tower 

1 2 3 

The maximum value of the driving torque, Nm 118572 113004 

The minimum value of the driving torque, Nm -61055 -48909 

The maximum value of the driving power, W 6283 6798 

The minimum value of the driving power, W -4030 -2978 

Maximum difference in the position of the 

trolley and the load, m 
0,036 0,017 

RMS value of the driving torque, Nm 55944 73859 

RMS driving power, W 2218 2669 
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Table 2.4 continuation 

1 2 3 

RMS value of the difference in the position of 

the trolley and the load, m 
0.0182 0.0084 

The value of the optimization criterion 255755 163318 

 

Thus, changing the direction of the trolley movement causes an increase in 

some indicators and a decrease in others. 

 

2.3 Optimization of the slewing of the boom crane upon a complex 

integral criterion 

 

The operation of the slewing mechanism results in load oscillations on a 

flexible suspension and large dynamic forces on the elements of the drive mechanism 

and the metal structures of the crane [31-39]. These loads are especially dangerous 

during the transient processes of the slewing mechanism (starting and braking). It is 

proposed that in order to eliminate the load oscillations and to reduce the dynamical 

forces, the starting process should be optimized [40-51]. 

It is reasonable to use a complex integral criterion, which takes into account 

the effect of the dynamic forces in the crane slewing drive mechanism and their rate. 

The latter has a significant influence on the occurrence of oscillations in the drive 

mechanism and the load on a flexible suspension. While solving the optimization 

problem, the problem of minimizing the complex nonlinear integral criterion 

(functional) arises that cannot be solved using the existing analytical and numerical 

methods. One of the ways to solve the above-mentioned problem is to use a 

metaheuristic algorithm [52, 53], in particular, the ME-PSO method [55] or other 

similar methods. The solution of this problem will make it possible to apply the 

optimization methods for the motion modes of nonlinear mechanical systems. 
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The expansion of the scope of activities and the emergence of new lines of 

research and new, more difficult problems contribute to the need for other methods 

to solve problems of increased complexity and dimensionality. This requires further 

improvement of optimization methods and the development of new mathematical 

optimization models which may be applied in present-day information technologies 

[52]. 

Studies [52, 53] provide the findings of recent research on the development 

and implementation of applied combinatorial optimization methods, the issues of 

formalization, classification, and assessment of the computing complexity of 

combinatorial optimization problems, and state-of-the-art approaches to the solution 

of the above problems. The main focus is on metaheuristic methods. It has been 

confirmed that combinatorial optimization methods can be used to solve a wide 

range of applied problems arising in science, technology, biology, economics, 

production, etc. Optimization by means of natural (biological) methods is becoming 

widely spread in the various domains of human activities [54]. 

One of the methods applied for the solution of this problem is the particle 

swarm optimization (PSO) method, which simulates the swarm behavior when it is 

moving in some environment (water, air, etc.) [55]. 

The authors of [56] have analyzed the genetic algorithm, the PSO algorithm, 

and the neuron-genetic method for the solution of the problem. 

The PSO method is used to calculate various control problems, develop 

artificial neural networks, process signals, etc. [55, 57-60].  

Authors in [61] propose a new technology based on the particle swarm 

optimization technology. The basic idea consists in the re-initiation of the stagnation 

swarm with low intelligence efficiency. 

The use of swarm-based technologies, the PSO method or other similar 

methods and their modifications [52-61] makes it possible to use the optimization 

methods of the motion modes of nonlinear mechanical systems. 

The purpose of this study is to optimize the slewing mode of the boom crane 

upon a complex integral criterion. To achieve this purpose, the following problems 
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should be solved: 1) to choose the model of the boom crane slewing dynamics; 2) to 

justify the optimization criterion of the crane slewing mode and to determine its 

extreme values; 3) to determine the optimal mode of the slewing mechanism motion; 

4) to analyze the obtained results. 

While developing the dynamic model of the boom crane slewing mechanism, 

we suppose that the basic elements of the crane are absolutely solid objects, except 

for the drive mechanism, whose elements have elastic properties, and the load on a 

flexible suspension, which is represented in the form of a moveable mathematical 

pendulum. Besides, we ignore the rope’s radial vertical deviations that do not depend 

on the slewing mode and are determined by the centrifugal force, so we only take 

into account the rope’s deviation in the direction that is tangential to the circular load 

motion. Thus, the dynamic model of the boom crane slewing mechanism may be 

represented as a holonomic mechanical system with three degrees of freedom, as 

shown in fig. 2.6 [34]. 

 

Fig. 2.6 A dynamic model of the slewing mechanism 
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The angular coordinates of the rotation angle of the electric motor rotor 0, the 

revolving part of the boom crane 1, and the load 2 reduced to the axis of rotation of 

the crane are taken as generalized coordinates. 

The presented dynamic model of the crane slewing mechanism is matched 

with the mathematical model in the form of a system of three differential second-

order equations [34]: 

 

 

(2.43) 

 

 

where m – is the mass of the load on a flexible suspension; I0
 
– is the inertia moment 

of the drive mechanism reduced to the axis of the crane slewing; I1
 
– is the inertia 

moment of the revolving part of the crane relative to its revolution axis; M0 – is the 

breakaway torque on the electric motor shaft reduced to the revolution axis of the 

crane; M1 – is the resistance torque in the revolving part of the crane relative to its 

revolution axis; C – is the rigidity factor of the drive mechanism, reduced to the 

revolution axis of the crane; r – is the length of the boom from the revolution axis of 

the crane to the trolley position; l – is the length of the flexible load suspension;  

g – is the free-fall acceleration. 

Loads emerging during the starting process in the transmission mechanism are 

significant for the crane slewing mechanism. In addition, the nature of the change in 

these loads has a considerable influence on the oscillatory processes that take place 

in the transmission mechanism and the flexible load suspension. Therefore, a 

complex dimensionless integral dynamic criterion, which takes into account the 

relative root-mean-square value of elastic torque in the drive mechanism, and its rate 

have been chosen as the optimization criterion and is represented by the following 

dependence: 

 

(2.44) 
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where t – is the time; t1 – is the duration of a transient process (starting, braking); 

0101,MM   – are the elastic torque in the drive mechanism and its rate, respectively, 

reduced to the crane revolution axis; Mн – is the nominal torque on the drive motor 

shaft reduced to the crane revolution axis;  – is the dimensionless weighting factor 

that takes into account the proportion of the elastic torque and may vary from 0 to 1. 

Let us determine the constituents of the criterion (2.44). First, the dependence 

of the elastic torque in the drive mechanism is found from the second equation of the 

system (2.43): 

 

(2.45) 

 

Dependence (2.45) may be reduced only to the generalized coordinate 2 and 

its time derivatives. For this purpose, let us express the coordinate 1 from the last 

equation (2.43) through coordinate 2 and its derivative; as a result, we obtain: 

 

(2.46) 

 

Having taken time derivatives from expression (2.46), we shall have: 

 

(2.47) 

 

(2.48) 

 

Having put expression (2.48) into dependence (2.45), we shall find: 

 

(2.49) 

 

Having taken a time derivative from expression (2.49), we shall find the rate of 

the elastic torque change in the drive mechanism: 
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(2.50) 

Having put expressions (2.49) and (2.50) into criterion (2.44) and made some 

transformations, we shall have: 

 

(2.51) 

 

Let us determine the boundary conditions of the starting process for the 

dynamic model of the boom system, as shown on fig. 2.6: 

 

(2.52)

              

              

 

where у – is the set angular velocity of the crane slewing; t0 and tn – are the initial 

and the end points of the motion interval. 

Let us reduce the system’s boundary conditions (2.52) to coordinate 2 and its 

time derivatives. For this purpose, let us express the motor rotor angle coordinate φ0: 

 

(2.53) 

 

Using dependencies (2.46) and (2.48), expression (2.53) takes the following form 

 

(2.54) 

 

Having taken time derivatives from expression (2.54), we shall have: 
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Having put expressions (2.46), (2.47), (2.52) and (2.54) into conditions (2.52), 

we have the extreme conditions of the boom system starting process expressed 

through the coordinate 2 and its time derivatives: 

 

(2.57) 

 

 

The condition for the minimum of criterion (2.51) under boundary conditions 

(2.57) is Poisson’s equations that cannot be solved analytically. Therefore, in order to 

solve such a complicated problem, we shall use the approximation methods of 

swarm-based technologies, in particular, the PSO method. For this purpose, let us 

break the motion interval of the boom system [0, t1] into discrete points with an 

interval t=(tn-t0)/n, where n – is the number of intervals. 

Let us replace  2 ,   2 ,   2 ,   2 , 
IVIV

 2 , 
VV

 2  independences 

(2.43), …, (2.57) and replace the continuity of these functions with the approximate 

discrete values. For example, the continuous coordinate  shall be represented in 

discrete values φ0, 1 , 2 ,…, 1n , n .  

Here, 0 – is the initial value of a function , and n is its end value. Similarly, 

functions  ,  ,  , 
IV

 , 
V

  shall be replaced with discrete values. 

Then extreme conditions (2.57) are formulated as follows: 
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Fig. 2.7 Function representation with discrete values 

 

In the middle of the interval, the discrete values of the function are determined 

by dependencies: 

 

(2.59) 

 

For discrete values of the function 1i , i , i , i , 1i , when i changes 

from 1 to n-1, discrete values of time derivatives of this function are calculated and 

used for the criterion: 

 

 

(2.60) 

 

 

(2.61) 

 

 

(2.62) 
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(2.63) 

 

 

 

(2.64) 

 

 

By using the boundary conditions (2.58) and the discrete values of the function 

1, 2,…,n-1 as well as dependencies (2.59),…,(2.64), the value of the optimization 

criterion may be determined: 

 

(2.65) 

 

By using the PSO method, the determination of new values 1, 2,…, n-1 is 

carried out until the criterion (2.65) reaches its minimum value. The end discrete 

values of the function will signify the optimal mode of the boom system slewing 

during the starting process. 

The calculations have been made for the slewing mechanism of a crane QTZ–

80 with parameters I0=71626.12 kgm2; I1=4920738 kgm2; С=6626669 Nm/rad; 

m=2000 kg; r=40 m; l=30 m; Mн=36.8 Nm; u=1355.2; =0.86; у=0.07 rad/s; 

t1=6 s; 0=95 rad/s; Н=95.04 rad/s; =2.8; g=9.81 m/s2 and provided that M1=0. 

As a result of the solution, the optimal motion mode has been found, which is 

represented graphically (fig. 2.8-2.10). 
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––  of the revolving part 

- - - - of the load 

Fig. 2.8 Dependences of the crane revolving part and the load angular velocities 

 

Fig. 2.9 Dependences of torques changes 

 

 

Fig. 2.10 3D phase portrait 
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We can see from the graphical dependences of changes in the angular velocity 

of the revolving part of the crane and the load (fig. 2.8) obtained after solving the 

optimization problem using a complex dimensionless integral dynamic criterion, 

which takes into account the relative root-mean-square value of the elastic torque in 

the drive mechanism and its rate, it reaches its set-value at 6-th second. The transient 

mode is smooth, without any oscillations in the system as contrasted to the direct 

start characteristic, as shown in [33, 34]. It allows achieving a considerable reduction 

in both the forces in the pillar (fig. 2.9) during the transient processes and the 

oscillations of the load (fig. 2.10). 

 

2.4 Optimization of tower crane luffing and slewing 

 

The tower cranes are widely used in many sectors of the economy, including 

machinery construction and civil engineering. Their performance, durability, and 

energy efficiency, as well as operational safety depend on the modes of movement of 

their mechanisms. 

The rational or optimal modes of crane movement allow realizing to a 

considerable extent the growth potential of the basic technical and operational 

indicators of the crane. 

The perfection of modern drive systems makes it possible to implement the 

optimal laws of motion of tower crane mechanisms qualitatively. Therefore, the 

relevance of scientific and applied works on the optimization of modes of movement 

of tower cranes is an extremely relevant area of research. 

The purpose of the presented work is to synthesize optimal modes of 

simultaneous movement of crane’s slewing and luffing mechanisms, which eliminate 

load oscillations and minimize energy consumption during the start-up. In order to 

achieve this goal it is necessary to execute the following tasks: 1) to develop a 

mathematical model of the simultaneous movement of the crane's slewing and luffing 

mechanisms, suitable for the study of the optimal control problems; 2) to perform the 

statement of the problem of optimal control of the mechanisms; 3) to apply 
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numerical optimization methods and find an approximate solution to the problem; 

4) to analyze the obtained results. 

In this investigation, the compatible movement of luffing and slewing of the 

crane is represented by the dynamic model with four degrees of freedom (fig. 2.11). 

We have chosen as generalized coordinates: linear coordinates of the centers 

of mass of the trolley x1 and the load x in the plane of a crane luffing, as well as the 

angular coordinates of the boom slewing φ and the load ψ in the horizontal plane. We 

assume that the length of the flexible suspension l is a constant value. 

 

 

Fig. 2.11 A dynamic model of simultaneous operation of crane luffing and slewing 

 

The accepted dynamic model (fig. 2.11) corresponds to the system of 

differential equations: 

 

 

 

(2.66)
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where m1 and m ‒ are masses of the trolley and the load respectively; F ‒ is the 

driving force of the trolley drive (reduced to the center of the trolley mass); W ‒ is 

the resistance of trolley movement; g ‒ is free-fall acceleration; l ‒ is the length of 

flexible load suspension; J ‒ is a moment of inertia of the slewing unit and crane 

pillar reduced to the axis of its rotation; M and M0 ‒ are the torque of the slewing unit 

drive and the torque made by resistance forces respectively (all the values are 

reduced to the axis of the crane slewing). 

From the last equation of the system (2.66) we find the difference of angular 

coordinates and the difference of linear coordinates: 

 

(2.67) 

 

(2.68) 

 

From the formula (2.67) we express the angular coordinate of а crane slewing 

unit and find its first and second derivatives, as a result of which we have: 

 

(2.69)
 

 

(2.70) 

 

(2.71) 

 

From math equation (2.68), we express the linear coordinate x1 and find its first and 

second derivatives: 
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(2.74)

 

 

Taking into account the expression (2.68) from the first equation of the system 

(2.66), we express the driving force of the trolley drive, resulting in: 

 

(2.75) 

 

Taking into account expression (2.67) from the third equation of the system 

(2.66), we express the driving torque of the slewing mechanism: 

 

(2.76)
 

 

In the process of starting the mechanisms (the trolley movement and the crane 

slewing), we should choose a mode that provides the least energy losses. Therefore, 

as the optimization criterion, we have chosen the root mean square of the power of 

the driving mechanisms of the trolley movement and the crane slewing, which is 

determined by the following dependence: 

 

(2.77) 

where tn – is the duration of the start mode of both mechanisms. 

After substituting (2.75) and (2.76) into criterion (2.77), it takes the next form: 
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Taking into account expressions (2.75) and (2.76), the integral functional 

(2.78) is nonlinear concerning the unknown functions x=x(t) and ψ=ψ(t) and their 

derivatives. 

The minimum of the criterion (2.78) should be determined concerning the 

boundary conditions: 

 

 

(2.79) 

 

 

where 
пt

х  and 
пt

  ‒ are linear and angular positions, respectively, of the the trolley 

and the load (in the radial direction), the crane tower and the load (in the tangential 

direction) at the end of crane acceleration.  

We reduce the boundary conditions (2.79) to the functions x=x(t) and ψ=ψ(t) 

and their derivatives: 

 

 

(2.80) 

 

 

where Δх – is the distance that the trolley passes during time tп. 

In addition, in the problem statement of optimal motion control of both 

mechanisms, we should use constraints that are connected with the torque capacities 

of the engines: 

 

(2.81) 
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λ1 and λ2 – is the torque capacities of the crane engines of the slewing and the luffing 

mechanisms respectively. 

Taking into account the constraints (2.81) and the requirement of minimizing 

criterion (2.78), a generalized criterion was formulated: 

 

(2.82) 

 

where δ1, δ2 – is weighting coefficients that show the importance of minimizing the 

relevant components (this study assumes that δ1=104 and δ2=106, which made it 

possible to meet the conditions (2.81) and minimize the duration of the transient 

mode of the system motion); 1
~
rC  and 2

~
rC  – are criteria that take into consideration 

the first and the second constraints (2.81). They are determined by the following 

dependencies: 
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~
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If constraints (2.81) are met, then the criteria become zero. Thus, the topology 

of criterion (2.82) is quite complex. To solve this optimization problem, we use the 

ME-PSO method [27]. 

To do this, first, we set out the basis functions that will be used later to find an 
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(2.84) 

 

 

where 2/nt
х  – is the radial position of the load at the moment 

2

nt . 

The basis function for the coordinate ψ is the solution of the boundary 

problem: 

 

 

 

(2.85) 

 

 

 

where 2/nt
  – the tangential position of the load at the moment 

2

nt . The final 

conditions of the load movement (in both boundary problems) are set in such a 

manner that its oscillations on the flexible suspension at the time tп are absent. 

The ME-PSO method parameters for solving the problem and argument search 
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Approximate solutions have been obtained for two variants: trolley movement 

from tower and trolley movement to the tower. All calculations were conducted on 

the basis of system parameters: l=3 m; J=5.5·106 kg·m2; m1=300 kg; m=5000 kg; 
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second case x0=30 m. The parameters correspond to the Liebherr 140 hc tower crane 

[12]. 

As a result of ME-PSO method application for the first variant the next 

parameters were obtained: Δx=1.68 m; 2/nt
х =1.61 m; Δψ=0.322 rad; 2/nt

 =0.04 rad 

and the acceleration duration tn=6.49 s. For the second case, the following values of 

the basic functions parameters were obtained: Δx=-6.15 m; 2/nt
х =25.80 m; Δψ=0.219 

rad; 2/nt
 =0.04 rad and the acceleration duration tn=6.56 s. 

The efficiency of the algorithm is confirmed by graphs showing the decrease 

of the Cr criterion when using the ME-PSO algorithm (fig. 2.12). 

  

a)      b) 

Fig. 2.12 Graphs of reducing the Cr criterion for the first (a) and second cases (b) 

 

It can be seen from fig. 2.12 that at the early iterations of the algorithm, a rapid 

minimization of the Cr criterion value is performed. 

In order to illustrate the obtained results on fig. 2.13 and 2.14, the graphical 

dependencies of the kinematic, dynamic, and energetic characteristics of the 

movements of luffing and slewing mechanisms of the Liebherr 140 hc tower crane 

are shown. 
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a)      b) 

   

c)      d) 

   

e)      f) 
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g) 

Fig. 2.13 Plots of kinematic, dynamic and energetic characteristics of luffing and 

slewing mechanisms for the case of trolley movement from the tower: a) the phase 

trajectory of the load oscillation in the radial direction; b) the phase trajectory of the 

load oscillation in the tangential direction; c) the speed of trolley movement (black 

line) and the load speed in the radial direction (gray line); d) the speed of crane 

slewing (black line) and the load slewing in the tangential direction (gray line); e) the 

dynamic component of the driving torque of the crane slewing mechanism; f) the 

dynamic component of the driving force of the luffing mechanism; g) the dynamic 

component of the drive power of the luffing mechanism, (gray dashed line), the 

dynamic component of the drive power of the crane slewing mechanism (gray line) 

and the sum of these powers (black line) 
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a)      b) 

   

c)      d) 

  

e)      f) 
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g) 

Fig. 2.14 Graphs of kinematic, dynamic and energetic characteristics of the luffing 

and the slewing mechanisms for the case of the trolley movement toward the tower: 

a) the phase trajectory of the load oscillation in the radial direction; b) the phase 

trajectory of the load oscillation in the tangential direction; c) the speed of the trolley 

movement (black line) and the load speed in the radial direction (gray line); d) the 

speed of the crane slewing (black line) and load slewing in the tangential direction 

(gray line); e) the dynamic component of the driving torque of the crane slewing 

mechanism; f) the dynamic component of the driving force of the luffing mechanism; 

g) the dynamic component of the drive power of luffing mechanism (gray dashed 

line), the dynamic component of the drive power of the crane slewing mechanism 

(gray line) and the sum of these powers (black line) 

 

The analysis of the data given in Table 2.5, as well as the plots on fig. 2.13 and 

fig. 2.14 allows to state that the applied technique makes it possible to find the 

approximate solutions to the optimization problem of the simultaneous work of both 

mechanisms (slewing and luffing), taking into account the constraints caused by their 

drives. 
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Table 2.5 Numerical values of the optimal movement of the slewing and the luffing 

mechanisms 

Parameter 

Trolley movement 

from the 

tower 

toward 

the tower 

The maximum torque of the slewing mechanism, Nm 163193 159790 

The minimum torque of the slewing mechanism, Nm -107844 -47848 

The maximum force of the luffing mechanism, N 5177 7410 

The minimum force of the luffing mechanism, N -3917 -8690 

The maximum of the total power of both mechanisms, W 11351 13633 

The minimum of the total power of both mechanisms, W -8701 -6668 

The maximum deviation in positions of the trolley and the 

load in the radial direction, m 
0.2941 0.4842 

The maximum deviation in positions of the trolley and the 

load in the tangential direction, rad 
0.0218 0.0041 

The RMS value of the driving torque of the crane slewing 

mechanism, Nm 
96529 102942 

The RMS value of the driving force of the luffing  

mechanism, N 
3103 4934 

The RMS of the total power of both mechanisms, W 6643 6010 

The RMS value of the deviation in the position of the trolley 

and the load, m 
0.0128 0.0028 

The RMS value of the deviation in the position of the boom 

and the load, rad 
0.1760 0.2752 

 

The difference in the values of the evaluation indexes (Table 2.5) is due to the 

action of centrifugal force acting on the trolley and the load in the radial direction. 

The energetic, dynamic, and kinematic parameters of the found laws of the 
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mechanisms motion are smooth, which confirms the possibility of their practical 

implementation utilizing of controlled asynchronous electric drive. 

 

 

Conclusions to chapter 2 

 

1. A dynamic model and mathematical model for the movement of the crane 

slewing mechanism with a constant velocity of the trolley movement have been 

developed. The torque (force) of the drive is modeled with the Kloss equation. 

2. The analysis of the modes of movement of slewing and luffing mechanisms 

has been carried out and it is established that the drive of the slew mechanism during 

the transitional mode of movement is overloaded by torque and power. The steady 

power of the slewing mechanism is proportional to the distance from the trolley to the 

axis of rotation. The maximum value of the total power of the mechanisms at 

different values of the trolley initial position x0 is approximately the same, although 

the moment of occurrence of the maximum depends on the value х0. 

3. The optimization problem of the boom crane slewing mode has been solved 

by minimizing the integral functional. In order to solve the, an approximate method 

ME-PSO has been used. This method has made it possible to optimize the motion 

modes of mechanical system. 

4. The optimal slewing mode of the crane boom system has made it possible to 

minimize the dynamical forces in the drive mechanism and the metal structures of the 

crane and eliminate oscillations of the load on a flexible suspension during the 

transient process, which improves the performance in terms of reliability and 

efficiency of the crane. 

5. The problem of the mechanism movement optimal control has been stated. It 

includes the criterion of energy consumption during the start-up of the mechanisms; 

the requirement to ensure the torque capacity of the mechanism drives; boundary 

conditions corresponding to the elimination of the load oscillations in the radial and 

tangential directions at the end of the mechanisms acceleration. A generalized 



CHAPTER 2 

102 

criterion was developed to ensure that the constraints are met. It includes the penalty 

coefficients required to ensure that the system’s movement is constrained. In 

addition, the basis functions were selected to search for approximate solutions to the 

optimization problem. 

6. Using the ME-PSO metaheuristic method, the parameters of the basic 

functions, and the duration of the transition mode were found. These parameters 

minimize the value of the generalized criterion. All the calculations were made for 

the cases of the trolley movement from the tower and toward it. There has been 

established the smoothness of the change of system motion characteristics. It 

improves the reliability of the mechanisms. In addition, eliminating of the load 

oscillations in radial and tangential directions allows increasing the crane 

productivity, reduces the hoistman’s workload, and provides the possibility of 

automating load movement operations. 
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CHAPTER 3. MANAGEMENT AND OPTIMAL CONTROL  

OF OVERHEAD CRANES 

 

3.1 Optimization of bridge crane movement control 

 

Bridge cranes are used in many processing of modern industries. The 

performance of the bridge cranes influences the efficiency of the technological 

processes. In order to state the ways to increase crane efficiency the study of 

dynamical and energetic processes, that take place in the crane mechanisms, should 

be carried out. 

In the early scientific researches of bridge cranes dynamics, the simple models 

of the systems and external forces were used [1-4]. The two- and three-mass models 

have been used. The driving force was assumed a constant value. The results of these 

works allowed to calculate dynamical loads with analytical expressions at the first 

approximation. In works [5-8] assumed that driving force is a function of time or 

speed of the crane drive. 

The new approaches to dynamic loads calculation comprise the dynamic 

mechanical characteristic of the system’s drive [5, 9], non-linear effects [10-15], etc. 

The problems of rationalization of the bridge crane movement were studied in 

the works [16, 17]. Another approach to increasing bridge crane efficiency is to 

obtain the optimal law of its movement. One of the major conditions that have been 

studied in many works is the elimination of load oscillations. The major factor in such 

an approach is the optimization criterion. The minimization of transition regimes 

duration [18-25] is connected with increasing the overall level of dynamical loads. 

Dynamical processes in the crane depend on the external forces and system 

parameters [26, 27]. That is why solutions of optimal problems should be found in 

domains of movement modes and system parameters. 
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Despite rigorous researches in the area of the crane dynamics and optimal 

control, the unsolved scientific problems are steel remain: 1) optimization of the 

bridge crane regimes has done only in relation to one criterion (time, energy, force, 

etc.). This problem statement is limited; 2) the implementation of the optimal laws of 

crane motion with frequency-controlled drive have not been studied properly; 3) the 

capability of using particular techniques in optimizations problems have studied 

improperly; 4) the analysis of the solved optimal problem carried out upon not all 

important indications and so on. 

For this reason, the goal of the current research is to obtain optimal mode of 

movement of the bridge crane and its dynamical parameters which allow increasing 

the efficiency of the crane exploitation upon indications: productivity, reliability, 

energy efficiency, etc.  

In order to achieve the goal the following tasks should be solved: 1) to state the 

optimization regimes problem for the bridge crane; 2) to find the solution of the stated 

problem; 3) to carry out a comparative study of the obtained results and to estimate 

the effect of optimization. In order to provide research, we choose a dynamic model 

of bridge crane and scheme of its asynchronous drive (fig. 3.1) [9, 17]. 
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   a)      b) 

Fig. 3.1 Four-mass dynamic model of the bridge crane (a) and scheme of the bridge 

crane asynchronous drive (b) 
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Mathematical model of the crane is a system of the second order non-linear 

homogeneous differential equations: 

 

 

 

 

 

 

(3.1) 

 

 

 

 

 

 

where W
~

 – variable resistance of the bridge crane movement; l – length of flexible 

suspension of the load; g – acceleration of gravity; х, xb, xbr, xd – generalized 

coordinates of the load, end beams, crane bridge and drive respectively; m, mb, mbr, 

md – reduced masses of the load, end beams, crane bridge and drive respectively; сbr, 

сd – reduced coefficients of stiffness of the crane bridge and the drive transmission 

respectively; kbr, kd – reduced dissipation factor of the crane bridge and transmission 

respectively; Fd – drive force which is reduced to the linear movement (it depends on 

electromagnetic torque of the crane drive); u1α, u1β – projections of generalized vector 

voltage stator to the coordinate axes α and β ( )2cos(

0

max1 

t

fdtUu  , 

)2sin(

0

max1 

t

fdtUu  ); Umax – phase voltage amplitude of the drive; f – frequency 

of drive voltage; е2β, е2α – EMF, which are being induced by flux linkage of rotor to 

axes α and β respectively; (e2α=pωdr(L2i2β+L12i1β)+i2αR2), 
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e2β=pωdr(L2i2α+L12i1α)+i2βR2)); р – number of crane electric drive pairs of poles; R1 – 

active resistance of the stator winding; R2 – reduced to the stator active resistance of 

the rotor winding; δ – dispersion coefficient (δ=1-(1+Х1(2πfL12)
-1(1+Х2(2πfL12)

-1)-1); 

Х1 – inductive reactance of the stator winding; Х2 – reduced to the stator inductive 

reactance of the stator winding; L1, L2 – inductance of stator and rotor windings 

respectively; L12 – coefficient of mutual induction; kr and ks – magnetic coupling ratio 

of rotor and stator respectively (kr=L12L2
-1; ks=L12L1

-1); ωdr – angular speed of the 

drive; i1α, i1β and i2α, i2β – projections of generalized vector of current of stator and 

rotor to the coordinates axes α and β; u – gear ratio of the drive; ηdr – efficiency of 

transmission; rw – radius of a wheel of the crane movement mechanism. The variable 

resistance of the bridge crane movement W
~

 determined as follows: 

 

(3.2) 

 

 

The chosen mathematical model includes mechanical and electrical values. 

Thus, in the research, we have taken into account complicate electrical-mechanical 

processes and their interinfluence. 

One of the ways to increase a crane operation efficiency is to optimize its 

transition modes of motion and its parameters. In the framework of the study, a 

complex (terminal-integral) criterion has been chosen. It may be presented as 

follows: 

 

 

(3.3) 

 

where Ter and Int – terminal and integral parts of the complex criterion Cr 

respectively; T – duration of the transition process (acceleration or deceleration of the 

crane); Rbr and Rd – dynamical loads in the crane bridge and drive (transmission) 

respectively; Δx – deviation of the load from the vertical, which determines low-
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frequency dynamic loads in the crane bridge; Ω0 – free frequency of the load on the 

flexible suspension (
l

g
0 ); 

Ter
1  and 

Ter
2  – weight coefficients for terminal part 

of Cr; 
Int

1 , 
Int
2 , 

Int
3  and 

Int
4  – weight coefficients of the integral part of Cr. Weight 

coefficients for both parts of criterion (3.3) are dimensionless, their sum is equal to 

one. The values of weight coefficients correspond to the importance of respective 

factors, i.e. how important to decrease one or the other factors. 

Minimization of criterion Cr (3.3) allows increasing the life duration of the 

crane elements (bridge, couplings, gears, shafts, etc.), crane’s productivity, and 

energy efficiency.  

Without consideration of electromagnetic transition processes in the crane 

drive and dissipation of energy in mechanical elements the criterion Cr (3.3) may be 

presented in the following form: 

 

 

 

 

 

 

(3.4) 
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bbr mmmB 1 ;  

)()( 2
02 mm

с

m
mmB br

br

b
bbr  

; 

2
03


br

brb

с

mm
B ;  

brmmС 1 ; 

2
02
 brmС . 

The boundary conditions for the reduced masses are as follows: 

 

 

 

 

(3.5) 

 

 

 

 

 

Boundary conditions (3.9) may be rewritten in the following form: 

 

 

(3.6) 

 

Note, that adding to boundary conditions (3.6) extra conditions: 
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The study of the integral criterion Int with Legendre condition [30] shows that 

it may be minimized. Indeed, the aggravate Legendre condition is met: 

 

(3.8) 

 

 

where I – integrand of the functional Int. 

The first part of the expression (3.3) does not cause a significant effect. So, 

during optimal control problem solving, let us assume W
~

 is constant and equal to 

0,015(mb+mbr+m)g. This assumption greatly simplifies the solving of the problem. 

Let us try to use the variation calculus [28] to find the solution of the problem. 

For this purpose, we should obtain the extremum necessary of the Cr criterion – the 

Euler-Poisson equation. It may be presented as follows: 

 

(3.9) 

 

where L – the linear operator, which forms the Euler-Poisson equation. The expanded 

form of the expression (3.23) has the following form: 

 

(3.10) 

 

where Dz − coefficients, which depend on known coefficients Ai, Bj and Cq. In order 

to solve the differential equation (3.10) we should consider a characteristic equation: 

 

(3.11) 

 

Taking out a factor r4 and substituting r2 to y we obtain next equation: 

 

(3.12) 
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It is impossible to find the solution of the sixth-degree algebraic equation. So, 

find the solution of the optimal control problem is impossible. It may be shown, that 

the analytical solution is impossible to find with Pontryagin’s maximum principle or 

dynamic programming method neither. 

Hence, we should use an approximate approach. In order to find the 

approximate solution of the problem let use the direct variation method [29]. The 

proposed for that purpose basis function is a polynomial of the n-th order: 

 

(3.13) 

 

where Ge – unknown coefficients; n – the highest degree of extra members of the 

polynomial (they should be used in order to minimize integral criterion Int). The 

unknown coefficients Gb must be found in such a way that function ᾶ met boundary 

conditions: 

 

(3.14) 

 

 

Thus, the polynomial expression ᾶ is the function of n-18 unknown coefficients 

Ge. The next step – is finding the expression: 

 

 

 

 

(3.15) 

 

Note, the system parameters md, mb, mbr, m are unchangeable (based on the 

meeting of the crane design conditions). Parameters T, v may be changed, but they 
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might obtain the values of сbr, l, in their limited domains in such a manner, that 

expression (3.15) attains the minimum. The same is true for the mode parameter s. 

In order to minimize the expression (3.15) the stated optimal control problem 

has been reduced to the linear programming problem [30]: 

 

(3.16) 

 

where cd.min and cd.max – lower and higher boundaries of parameter cd domain 

respectively; lmin and lmax – lower and higher boundaries of parameter l domain 

respectively. In the context of the used approach n has been chosen equal to 5. It is 

the rational value – the compromise between a computational compilation and an 

accuracy of the problem solution. The stated linear programming problem has been 

solved with differential evolution method [31] for parameters’ values presented in 

Table 3.1. 

 

Table 3.1. Values of system parameters, which have been used in calculations 

Parameter Unit of measurement Value 

md 

kg 

3.50∙103 

mb 2.05∙104 

mbr 2.60∙104 

m 2.00∙104 

T s 4.00∙100 

Pd.nom W 2x1.50∙104 

lmin 
m 

1.50∙100 

lmin 8.00∙100 

v m/s 2.10∙100 

cbr 

N/m 

6.90∙106 

cd.min 4.80∙106 

cd.max 1.92∙107 
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maxmin
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The optimal value parameter cd is the domain boundary cd.min. The best values 

for parameters l and s are 2,15 m and 4,2 m respectively.  

In order to show the advantages of obtained suboptimal mode of the bridge 

crane movement, the comparative analysis has been carried out. The suboptimal 

mode of the crane movement was comparing with the S-curved law of the crane 

motion. It is a standard curve in the variable-frequency crane drive [32]. 

The comparison was carried out with indicators: maximum of load’s deviation 

angle φmax during crane movement; maximum of load’s deviation angle φmax.T after 

crane stop; maximum of the force in the crane bridge Rbr.max; maximum of the force in 

the crane transmission Rd.max; maximum of the crane driving torque Md.max; root-

mean-square force in the crane bridge Rbr.RMS; root-mean-square force in the crane 

transmission Rd.RMS; root-mean-square of the crane drive torque Md.RMS; relative 

maximum of the crane drive power max

~
Р  (in fractions of nominal value); relative 

maximum of the crane drive current max

~
I  (in fractions of nominal value). 

The indicators that been calculated for all cycles of motion „acceleration-

steady movement-deceleration” are presented in Table 3.2. 

 

Table 3.2. Values of indicators 

Indicators Unit of measurement 
Regime of motion 

Reduction 
S-curved Suboptimal 

1 2 3 4 5 

φmax 
grad 

1.10∙101 7.56∙100 45.5% 

φmax.T 1.10∙101 2.50∙10-1 44 times 

Rbr.max 

N 

4.67∙104 4.88∙104 -4.3% 

Rd.max 1.49∙103 1.75∙103 -14.8% 

Rbr.RMS 1.25∙104 1.06∙104 17.9% 

Rd.RMS 3.53∙102 3.36∙102 5.1% 

Md.max 
N m 

9.77∙102 9.98∙102 -2.1% 

Md.RMS 2.24∙102 2.16∙102 3.7% 
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Table 3.2 continuation 

1 2 3 4 5 

max

~
Р  - 3.70∙100 3.52∙100 5.1% 

max

~
I  - 4.47∙100 3.91∙100 14.3% 

 

The duration of the steady movement of the crane is equal to 3 s. Analysis of 

the data placed in Table 3.2 shows that suboptimal control of the crane movement 

reduced root-mean-square forces and torques, but the maximums of the dynamical 

loads are slightly increased. The reason why root-mean-square forces and torques 

have decreased is the oscillations of load on flexible suspension became much lesser 

and dynamical loads, which are caused by oscillations, have decreased. 

The residual oscillation (after crane stop) of the load during suboptimal control 

practically is absent. It allows increasing crane productivity. Also, the intensity of the 

crane operator’s work is much lesser. In order to show the quality of implementation 

the plots have been built (fig. 3.2). 

The black plots on fig. 3.2 (a and b) present the speed of the crane; the gray 

ones refer to the set speed. Analysis of the plots shows that frequency-controlled 

crane drive able to implement the suboptimal law at high quality. Plots, which are 

presented in fig. 3.2, show, that the determining factor of the crane working process 

is the shape of the acceleration and deceleration functions [33]. 

  

a)                            b) 
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c)                             d) 

Fig. 3.2 Plots of the crane speed during suboptimal (a) and S-curved (b) control; 

phase trajectory of the load oscillations during suboptimal (c) and S-curved (d) 

control 

 

3.2 Management and closed-loop optimal control of the system „crane-

load” (minimum time control) 

 

The problem of optimal control of the system „crane-load” is very important 

both for practical and theoretical purposes. The case when the criterion is the duration 

of a system’s movement is called the time-optimal control problem. The solution of 

the problem allows for advancing the control systems of overhead, bridge and tower 

cranes [16, 25, 33, 34]. 

A wide range of methods was used for solving the time-optimal control 

problem: principle maximum [16, 25, 33], variational calculus and dynamical 

programming [25], controllability function method [35] and others. In the theoretical 

context, the time-optimal control problem investigations lead to the improvement of 

optimization methods and their applications. 

In the article [34] the non-symmetrical constraints have been used. It allowed 

to obtain the soft-control mode of the system motion. The same constraints will be 

used in the following research. In addition to that, the problem solution has to be 

found in the closed-loop form [25]. On the practical sense, it provides a significant 
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advantage: closed-loop control eliminates all the impacts of a priori unknown 

external disturbances. A combination of these two characteristics in the problem 

statement makes it difficult to solve. 

The used in the study approaches may be applied to other optimal control 

problems, the theory of stability [37], synthesis of optimal automatics systems [38], 

etc. 

The system „crane-load” is presented on fig. 3.3. Such a dynamic model is 

widely known in problems of optimal control of overhead, bridge [14, 26, 34, 35] and 

tower [16] cranes. 

 

Fig. 3.3 The dynamic model of the system „crane-load” 

 

The equations of the system’s motion for the current research are the linearized 

differential equations: 

 

 

(3.17) 

 

 

where m1 is the reduced mass of the crane; m2 is the mass of the load; x1 and x2 are the 

coordinates of the centers of masses m1 and m2, respectively; g is the acceleration of 
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gravity; l is the length of the flexible suspension; F is the driving or braking force 

acting on the crane; W is the reduced force resisting the motion of the crane.  

The equations of the system’s motion for the current research are the linearized 

differential equations (3.17). The reason why we have used linearized differential 

equations (3.3) is connected with the angle of the load deviation. In practice, the real 

angle of the load deviation is not bigger than 10…15 degrees. For that range of 

angles, the error of calculation (in terms of load position) is equal to 0.5…2.0% 

(these values are obtained as an expansion of the sin and cos functions in series in the 

nonlinear equations of the system (fig. 3.3) motion). 

In the current investigation, the crane acceleration has been considered. 

Assume that the velocity of the crane during that mode does not change its sign. That 

is why 11 



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



dt

dx
sign . Let us denote: х2-sT=y1 and 
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WF
u . These 

denotations allow us to rewrite the motion equations (3.17) in the following form: 

 

(3.18) 

 

where sT is the final position of the crane; u is a control function (or just control); yj is 

the j-th phase coordinate of the system; Ω is the natural frequency of the load about 

the moving crane, 
1
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mm 
 . The initial and the final conditions of the 

system motion are: 

 

(3.19) 

 

where vT is the final velocity of the crane (steady velocity of the crane); T is the 

duration of the system’s acceleration which is unknown. 

Initial conditions (3.19) mean the state of rest; the final conditions (3.19) refer 

to the elimination of the load oscillations at the moment T. 
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In the frame of the current study the criterion to minimize is the duration of the 

crane acceleration: 

 

(3.20) 

 

Minimizing of the duration T provides increasing of crane productivity, which 

is desirable for the tower and overhead cranes in the sea and river ports. 

Practical necessity demands to take into account the control u constraints, 

which is connected with the torque capacity of the crane drive. Thus, the optimal 

control u must satisfy the following constraints: 

 

 

(3.21) 

 

 

where umax and umin are the upper and the lower boundary of the control domain; Fmax 

is the maximum drive force acting on the mass m1 during its acceleration. 

It should be noted that the duration of the acceleration T will be found by 

solving the optimal control problem (3.18)-(3.21). In order to solve the problem 

(3.18)-(3.21) the general form of the solution should be developed. Since the closed-

loop control problem is under consideration, the appropriate form of u is as follows: 

 

(3.22) 

 

where y is the vector-function (y=(y1, y2, y3, y4)
T); A is a vector of some parameters. 

From the previous investigation [16, 26, 34, 35] it is known that the time-

optimal control u switches between umax and umin. This information allows us to 

specify the function (3.22). We may suggest that the time-optimal control u is 

described with the following formula: 
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(3.23) 

 

where Ai is the i-th element of the vector A. 

The final position of the crane sT may be set for practical reasons. But in the 

research, we considered parameter sT as a so far unknown argument. That value 

should minimize criterion (3.20) as well. 

Thus, the problem (3.18)-(3.21) has been reduced to the finding of the vector A 

and the parameter sT. All the calculations were carried out for the parameters of the 

system that are set in Table 3.3. 

Table 3.3. Parameters of the system „crane-load” 

Parameter Unit Value 

Reduced mass of the crane, m1 
kg 

300* 

Reduced mass of the load, m2 500 

Length of the flexible suspension, l m 5 

Steady-state velocity of the crane, vT m/s 0.96 

Reduced force resisting the motion of the crane, W 
N 

156 

Maximum drive force, Fmax 1180 

* here we have used the reduced mass of the crane’s trolley 

 

In order to meet the final conditions (3.19) a terminal criterion was developed: 

 

(3.24) 

 

where Δ is a vector of phase coordinates deviation from their final (desirable) values 

(3.19). 

Hence, the complex criterion to minimize is as follows: 

 

(3.25) 
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where ψ is the weight coefficient which reflects the necessity to meet the final 

conditions (3.19). In the conducted calculations ψ=5·105. Such a big value of ψ, 

which has been established empirically, allows us to find control u that transmits the 

system to the final state (3.19) very accurately. It means that the system phase 

coordinates at the end of the acceleration will be almost equal to its final values 

(3.19). In other words, the value of ψ is a good compromise between the accuracy of 

final conditions (3.19) meeting and the requirement of criterion (3.20) minimization. 

Now we may consider the system as some MISO system (multiple input, single 

output). The inputs are elements of the vector A and the value of sT; the output is a 

value of criterion (3.25). 

Note, that there is only one set of numerical values of A1, A2, A3, A4, and sT 

which minimize criterion (3.25). Let us suppose that we have found the optimal set of 

these values. In that case Cr=T since Ter=0. Indeed, criterion Ter has a global 

minimum which is equal to zero. It is achieved when the final conditions (3.25) are 

completely met. As the final position of the crane x2(T) verges towards optimal crane 

position the value of criterion (3.25) reduces. That is why the optimal value of sT 

corresponds to the stable movement of the system. Otherwise, it causes the criterion 

(3.25) increasing. 

In order to minimize the criterion (3.25) a modification of particle swarm 

optimization method (ME-PSO) has been used. That optimization technique has been 

developed and investigated in the article [50]. The parameters of the used method are 

set in Table 3.4 (the numerical values of parameters are crucial for algorithm 

performance. That is why we have shown them in Table 3.4). 

Table 3.4. Parameters of the used optimization technique (ME-PSO) 

Parameter Value 

Number of particles in a swarm 30 

Acceleration constants c1 = c2 1.19 

Acceptable rate (AR) 0.001 

Number of iterations 500 
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By algorithm performance, we mean optimal problem (3.25) solution accuracy 

and duration of calculation. In the study, we have used previously tested values of 

ME-PSO parameters (Table 3.4), which are related to the high algorithm 

performance. 

The components of the vector A and the value sT have been obtained as a result 

of the optimization problem (3.25) solving. With ME-PSO algorithm we have 

calculated such values of A1, A2, A3, A4, and sT which minimize the value of criterion 

(3.25). All the results are set in Table 3.5. 

Table 3.5. Values of the elements of the vector A and the value sT 

Parameter Value 

A1 -4122 

A2 1005 

A3 -4953 

A4 -197 

sT 1.00 

 

The duration of the system’s acceleration under time-optimal control equals 

2.1 s. Thus, the closed-loop time-optimal control problem is solved. Note, that the 

problem has been solved in the numerical form. Variations of the system parameters 

lead to the necessity of the vector A and the parameter sT correction. It requires a new 

solution of the problem (3.25). Finding the problem (3.25) solution does not require 

much calculation resources. In practice, it may be found by mean of a crane control 

system (microcontroller with custom-built software).  

In order to investigate obtained results the graphs have been plotted (fig. 3.5). 

The curve in the fig. 3.4 (a) has been built as a parametric plot [40] in 3D-space. It 

allows for observation of the main system phase coordinates. In fig. 3.4 (a) gray 

points denote the initial and final states of the system. Plots in fig. 3.5 show that all 

the boundary conditions (3.19) are met. Hence, further system movement will 

continue with no load oscillations. The maximum deviation of coordinates x1 and x2 

equals 0.5 m, the maximum deviation of their velocities is equal to 0.76 m/s. 
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A similar effect may be achieved for the deceleration mode of the crane. The 

obtained result may be exploited for increasing crane productivity. Indeed, there is no 

need to control the system’s movement in manual mode. It reduces the crane operator 

utilization and provides the opportunity to design the completely automated crane. A 

curve of the trolley velocity is denoted by a gray line on the fig. 3.4 (b). It shows that 

at the end of the acceleration the crane velocity equals vT (0.96 m/s). It also confirms 

that the previous assumption about the constancy of the trolley velocity sign is right: 

at the moment t=1.3 s the crane stops but it has not changed its direction. 

 

a)     b) 

Fig. 3.4 The graphical interpretations of the problem (3.1), (3.32)-(3.34) solution:  

a) 3D phase portrait of the system; b) control function and the crane velocity 

 

A curve of the control function u (fig. 3.4, b) has a switching form. It leads to 

some undesirable consequences, for instance, high-frequency oscillations of the crane 

metal construction. Another negative factor is high energy losses in the drive. In 

order to avoid these undesirable features the constraints to control rate should be 

taken into consideration. 

The root-mean-square value of the driving force is equal to 882 N or 74.7% of 

the full drive load. It reveals that during crane acceleration the drive mechanism does 

not work with full power. 



CHAPTER 3 

128 

 

During the second period of acceleration (from 0.8 to 1.3 s) the crane moves 

with turned off motor (fig. 3.5, b). During that period the motor does not consume 

any power (fig. 3.5). 

 

Fig. 3.5 The curve of the consumed power of the crane drive 

 

Observing the plot which is shown on fig. 3.5, one can note two peaks of 

power. The values of these maximums are approximately equal to each other (1140 

W – at the end of the first period and 1133 W – at the end of the third one). The drive 

maximum power is 7.5 times as steady-state power. Power overload acts during very 

short periods and does not dramatically affect the motor work. 

In order to illustrate one of the advantages of the calculated optimal closed-

loop control, we have considered the external stochastic disturbance – a wind rush. It 

influences both the crane and the load, but for the latter, the impact is much bigger. In 

the calculation, we have used the model of the wind rush, which includes: the speed 

of the wind, middle transverse section of the load and air density. The wind rush 

model (formula) was inserted into the equations (3.19). 

Results of numerical integration of the modified mathematical model we have 

presented on fig. 3.6 (it should be noted, we investigate the optimal control we 

obtained with no consideration of the external forces). 
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Fig. 3.6 The curves of the system’s dynamics under optimal control and the wind 

rush 

 

In fig. 3.6 dashed curve represents the wind force which acts to the load (it is 

denoted as Fw.2). The black full curve relates to the deviation in positions of the load 

and the crane. At the end of the crane acceleration that value equals to zero. Hence, 

further movement of the load will be with no oscillations. 

The crane velocity at the end of the acceleration equals to vT. Thus, all the final 

conditions (3.32) are met. Such a result has been achieved with variation in the 

duration of the crane drive on-off periods. 

Showed example supports the statement about invariant (to the external 

disturbances) property of the closed-loop optimal control [51]. 

 

3.3 Management and closed-loop optimal control of the system „crane-

load” (minimum integral criterion control) 

 

The handling of various loads with the help of bridge cranes is widespread. 

They are used in sea and river ports, factories of chemical and metallurgical industry, 

mechanical engineering and more. Bridge type cranes often work in unsteady 

operating modes (start, stop, reverse). It is known, that the default mode of motion of 
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the crane may be absent in the general case. Dynamic processes occurred during the 

transient motion of crane mechanisms may determine the efficiency of the crane, as 

well. The load usually is fixed on a rope and its vibrations affect the performance, 

reliability, and efficiency of bridge crane. The problem of eliminating of load’s 

vibrations for port’s loaders and steel valves is particularly relevant. In the first case, 

the elimination of load’s vibrations increases crane’s productivity and reduces the 

idle of the ship in port in the first case and increases the safety of the work in the 

second one. 

Vibrations of the load on a rope appear during transient motion of the crane, 

continue during its steady movement phase and are present even after crane’s stop. It 

is desirable to eliminate these crane’s vibrations as quickly, as it is possible [52]. 

However, the optimal control of velocity’s action to eliminate the load’s vibration 

significantly increases the dynamic load of crane’s elements and this crane can 

quickly fail.  

One may use other methods of solving this problem. For example, one may 

use fuzzy-controllers [53-56]. The disadvantage of such methods is that they do not 

include the constraints imposed on the drive mechanism of the crane, and that load 

vibrations may have a big amplitude during the transient process. 

One may use the passive damping devices for the elimination of load’s 

vibrations. By the way, there are a number of ways that are patented and used by 

different companies [57-59]. The main drawback of these methods is that they do not 

provide optimal control. That’s why the problem of a finding the optimal control of 

crane’s load oscillations during its removal is very important. 

One may take for the research the two-mass dynamic model of the mechanism 

of movement of the crane which is performed on fig. 3.3. This model is common and 

is used by many researchers [60-72]. The above-mentioned calculation model (fig. 

3.3) is described by a system of differential equations (3.17). 

One may take the system of equations (3.17) in a canonical form. Let’s add one 

more equation for the function of control’s changes: 
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(3.26) 

 

 

where y0 is the function proportional to the coordinate the load (
2

020 / xy
); φ is 

the function of the rate of control change. The constraints imposed on the control u 

are in the form of inequalities: 

 

(3.27) 

 

where Fmax is the maximum force over the crane which corresponds to the maximum 

torque on the motor shaft. 

The movement of the crane with a load is characterized by initial conditions 

which are recorded for the new phase coordinates y0, y1, y2, y3 as follows: 

 

 

 

(3.28) 

 

 

 

 

here ∆х is the difference of coordinates of the crane and load (∆х=х1-х2); α ‒ is the 

angle of the rope load with the vertical. The system (3.28) used an approximate 

estimation follows ∆х≈lα from the fact that sinα≈α, for the small values of α. This 

approach does not give significant errors. 

The initial conditions (3.28) allow one to determine parameters of motion of 

the crane and of the load which must be measured. This is necessary to determine 

these conditions and for their default at the crane’s system control. One must measure 
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the coordinate of crane’s position and its higher derivatives in time up to the third as 

well, a length of rope and rope angle of the load from the vertical and its higher 

derivatives in time up to the third as follows from this system. These parameters are 

measured with a help of the three encoders. One encoder measures the length of rope. 

It’s installed on the cable drum. The second encoder measures the position of the 

crane relative to zero. The third encoder measures the angle of the rope load from the 

vertical. Its output shaft is attached to the rope with a help of special fittings. 

The following final conditions must be performed in order to eliminate load’s 

oscillations during the moment when the crane is putting on the breaks: 

 

 

(3.29) 

 

The first condition in (3.29) is equivalent to the situation when the load’s speed 

is equal to zero, the second condition is equivalent to the situation when the 

difference of coordinates of the crane and the load is equal to zero, the third condition 

in (3.29) is equivalent to the situation when the difference in speed of the crane and 

load is equal to zero. So, the amount of energy’s oscillations of the load and of the 

crane’s movement should be equal to zero just at the moment t=T. This situation 

means the crane’s stopping and the lack of load’s vibration. 

In order to create the synthesis of control, one must set the criterion of 

optimality which will determine only the one optimal control of the entire set of 

alternatives. The criterion of optimality of motion of the crane during its braking may 

be adopted as an integral: 

 

(3.30) 

 

where δ1, δ2, δ3, δ4, δ5 are some coefficients. These coefficients can be calculated as 

follows: 
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(3.31) 

 

where kj ‒ the weight’s coefficient that takes into account the respective importance 

of the j-th index in the structure of the criterion; Ĩj ‒ a factor that brings the dimension 

of the j-th index in the structure of the criterion (3.30) to dimensionless form. 

Criterion (3.30) is an integrated linear-quadratic integral criterion and it reflects 

both the phase coordinates of the dynamical system and the „costs” to its control as 

well. 

Thus, one staged the task of the optimal control of the dynamic system „crane-

load”. The problem is that the dynamic system must be converted from the original 

position which is characterized by initial conditions (3.28) into the final one which is 

characterized by finite terms of (3.29). This optimality criterion (3.30) should be the 

least. In addition, one imposes the constraints on the control in the form of inequality 

(3.27) and the end of control T is unstable. 

We use the method of dynamic programming [63] for solving the problem of 

optimal control. This method of synthesis of optimal control allows one to obtain the 

control as a function of phase coordinates of dynamical systems. This control is in the 

closed-loop control form. The basic functional equation for this problem is written as 

follows: 

 

(3.32) 

 

where S ‒ Bellman’s function. 

The problem will be solved for the case when the control u is unconstrained 

(3.27). This circumstance gives one the possibility to find an analytical solution of the 

problem. However, we will consider the inequality (3.27) in the further content. One 

may search the minimum of the right side of the equation (3.32) for the function φ. 

Let’s differentiate it by the function φ and then equate the result to zero: 
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We find from equation (3.33) function: 

 

(3.34) 

 

Let’s substitute the equation (3.34) into the equation (3.32). Then we have: 

 

 

 

(3.35) 

 

Equation (3.35) is a nonlinear differential equation in partial derivatives. We 

will search its solution in the form of a quadratic form (it is common practice when 

solving similar problems [64]): 

 

(3.36) 

 

where А1, А2, А3, А4, А5, А6, А7, А8, А9, А10 ‒ constant coefficients to be determined. 

Taking the partial derivatives of expression (3.36) for functions y1, y2, y3 and u 

brings the following expressions: 
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Let’s substitute expressions (3.37)-(3.40) in equation (3.35) and then remove 
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(3.41) 

 

Equation (3.41) is true in the case when the expression in parentheses will be 

zero because the functions y1, y2, y3, u can’t be zero at the same time. Therefore, 

equation (3.41) can be replaced by a system of nonlinear algebraic equations: 

 

 

 

 

 

 

 

 

 

(3.42) 

 

 

 

 

 

 

 

 



.022

2
2

22
2

444

5

410
93933

2
10

5

94

872
2

3
5

910
6232

5

94
61

5

710
531

2
6

5

97
121

5

2
4

410
2

5

2
10

38
2
3

2
8

5

2
9

25
2
2

5

2
7

1
2
1














































































































































АА
ААААuyА

АА

ААuyА
АА

ААyy
АА

Аuy

АА
АyyА

АА
Аyy

А
Аu

А
АyА

А
Аy

А
y



























































.02

;0

;02
2

;0

;0
2

;0
2

2

;0

;0
4

;0
4

;0
4

5

410
93

2
10

5

94
87

2
3

5

910
62

5

94
6

5

710
5

2
6

5

97
1

5

2
4

410

5

2
10

38

2
8

5

2
9

25

5

2
7

1

























АА
АА

А
АА

АА

А
АА

АА

АА
А

АА
А

А
АА

А

А
А

А
А

А
А

А

А



CHAPTER 3 

136 

 

The system of equations (3.42) may be solved in analytical. But it is too 

difficult. So let’s simplify it. The expression (3.34) may be as follows taking into 

account formula (3.40): 

 

(3.43) 

 

Thus, in order to find the unknown function φ which is the first derivative of 

the function control of dynamic system one must find only four coefficients А4, А7, 

А9, А10. It’s necessary to form four equations in order to know these coefficients. The 

first and fourth equations of (3.42) contain only the coefficients А4, А7, А9, А10 so we 

will use them. One can get from equations (3.42) the third and fourth equation in 

which coefficients А4, А7, А9, А10 are unknown. We obtain the third equation by 

rewriting the second equation of (3.42) and taking into account the third and sixth 

equations of the system. We get the fourth equation when rewrite the ninth equation 

of system (3.42) taking into account the third equation of the last system. As a result, 

we have: 

 

 

 

 

(3.44) 

 

 

 

 

The first equation of (3.44) is independent of others and we can immediately 

write: 
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The negative root is rejected because they can lead to unstabilituy of the 

dynamical system. We can express the unknown coefficients А10 and А9 by the 

coefficient А4: 

 

(3.46) 

 

 

(3.47) 

 

The system of equations (3.44) leads to one algebraic equation of eighth order 

relative when one takes into account expressions (3.45)-(3.47): 

 

(3.48) 

 

The last one is reduced to the equation of fourth order when we will use replacement 

4
2
4

~
АА  : 

 

(3.49) 

 

Equation (3.49) may be solved by Descartes-Euler’s method. We will not bring 

solutions of these equations because they have significant volumes. We note only that 

equation (3.49) has two real and two complex solutions. One can find eight roots of 

the equation (3.48) turning to the reverse substitution 44
~
АА  . Thereafter, we 

choose only one - the real and positive root. Furthermore, we choose sign “+” before 

the root in expression (3.47) for the unambiguous determination of the coefficient 

А9. Thus, all complex and negative values of coefficients А4, А9 that satisfy the 

system of equations (3.44) are rejected because they can lead to the instability of the 

dynamical system „crane-load”. 
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The expression (3.45) may be used to find a function φ that is the first 

derivative of the control’s function u over time. We need to get just the same 

control’s function in such a manner u=u(y0, y1, y2, y3). 

One must to integrate the expression (3.45) for this purpose: 

 

 

 

(3.50) 

 

where C ‒ is the constant of integration. In order to find the constant of integration it 

is necessary to solve the following equation u(0)=u0 which in the expanded form will 

take such a form:  

 

(3.51) 

 

One may find the solution of equation (3.51) and then substitute it in the 

expression (3.50). We will have finally such control’s function u: 

 

(3.52) 

 

So we got control’s function which depends on the initial control and on phase 

coordinates as well. We can set arbitrarily the initial control’s function. In the 

particular case u0=0. This means no dynamic efforts over the crane’s drive at the 

beginning of its inhibition, in practice. The risk of significant current in electric and 

dynamic loads of the mechanical part of the crane’s drive and its metal faucet is 

eliminated as well. 

Let’s build a plot (fig. 3.7) for the resulting control’s law. There is also the 

three-dimensional phase portrait of the dynamical system (fig. 3.8). The gray point on 

fig. 3.8 denotes the origin of the coordinate system. 
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Fig. 3.7 Graph of the function of optimal control of dynamic system „crane-load” 

 

 

Fig. 3.8 Three-dimensional phase portrait of motion of dynamic system „crane-load” 
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The dynamic system has zero energy of motion in the origin of the scales i.e., 

crane stopped and load’s oscillations on the rope are absent. Thus the problem of 

optimal control can be considered as a solved problem. However, we do not take into 

account the constraints (3.27) when solved this problem. These constraints are 

usually imposed on control. Physically, this means that electric drive will 

occasionally be transshipped and will not be able to inplement optimal control. It is 

therefore necessary to take into account these constraints (3.27). 

An easy way to take into account constraints (such as (4)) is to miss the 

optimal control signal through a nonlinear element such as „saturation”. Such control 

will be called as suboptimal control because it consists of the pieces of optimal 

control and of the pieces of maximum and minimum values of control. Analytically 

this is expressed in the following form: 

 

(3.53) 

 

 

where u* ‒ suboptimal control that satisfies constraints (3.53); umin, umax ‒ 

respectively the minimum and maximum control. Here are the graphs similar to the 

above in fig. 3.9 and fig. 3.10 for the case umin=-0,4 m/s2 and umax=0,4 m/s2. One may 

see from the graphs that the control does not go to the upper limit. Let us narrow the 

limits of permissible values of controls: umin=-0,2m/s2 and umax=0,2m/s2. Physically, 

this means that the drive motor power is reduced by half. So it is possible to project 

the crane’s motor of less power. However, the duration of the transition process is 

increasing as seen from fig. 3.11 and fig. 3.12. Thus, one can reduce the crane’s drive 

power when the duration of the transition process is increased. Fig. 3.12 shows that 

the lack of narrowing of the range of allowable values of control is the changing of 

the sign of the crane’s speed. One can also specify another disadvantage of the 

optimal control as the suboptimal function. The control is a too small value when the 

phase coordinates of the dynamical systems „crane-load” are small as well. It means 

that at the end of the transition period control is „weak”. 
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Fig. 3.9 Graph of the function of the suboptimal control of the system „crane-load” 

while respecting the constraints (3.27) umin=-0,4 m/s2 and umax=0,4 m/s2 

 

 

Fig. 3.10 Three-dimensional phase portrait of the motion of the dynamic system 

„crane-load” while control is (3.53) (umin=-0,4 m/s2, umax=0,4 m/s2) 
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Fig. 3.11 Graph of the function of the suboptimal control system „crane-load” while 

control is respected the constraints (3.27) (umin=-0,2 m/s2 and umax=0,2 m/s2) 

 

 

Fig. 3.12 Three-dimensional phase portrait of the motion of the dynamic system 

„crane-load” while control is (3.53) (umin=-0,2 m/s2, umax=0,2 m/s2) 

 

The possible way to solve the problem of „weak” control is to change the 

variety coefficients kj, which are included in the structure of the optimization criterion 

of the transition process. 
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3.4 Management and optimal control of the system „crane-load” as a 

function of time (minimum time control) 

 

Many studies address the problem of suppressing the oscillations of an 

accelerating or decelerating simple pendulum with flexible suspension in minimum 

time. This problem is relevant due to the desire to improve the performance of 

devices with suspended load such as load-lifting cranes (especially in seaports). 

To solve this problem, we will use the maximum principle [66-70, 73, 74] and 

the method of moments [70]. Note that a feature of time-optimization problems is the 

presence of control constraints [72]. The maximum principle allows constraints for 

the control and state variables (speed, acceleration, etc.), but provides just 

“qualitative” information on control, saying nothing about the instants of transition 

from one control bound to another. To identify these instants, it is necessary to 

analyze the motion of system in the state space [66-68, 70, 73] or to solve 

transcendental algebraic equations [68, 69, 74]. 

Symmetric control constraints are used in [68, 72, 73, 76-78]. However, to 

apply in practice the solution of an optimal-control problem, or any other engineering 

problem [79], it is necessary to allow for friction. This necessitates using asymmetric 

constraints, which would complicate the problem [67]. 

Here, we will study the time-optimal control of a simple pendulum with a 

movable pivot using different problem statements and focusing on the effect of 

constraints on the dynamics of the system. The solve the problem, we will use both 

analytic and numerical methods. 

Consider a system that describes the motion of a simple pendulum with a 

movable pivot (fig. 3.3). The linearized differential equations of motion of the 

reduced masses m1 and m2 (3.17) are used in the research. Assume that the speed of 

the point suspension does not reverse its sign acceleration (deceleration), i.e., 

11 








dt

dx
sign . If х2=s1 and 
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WF
u , the system of differential equations 

(3.17) can be represented as: 
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(3.54) 

 

where Ω is the natural frequency of the bob about the moving pivot 

l

g

m

mm





1

21 )(
; Ω0 is the natural frequency of the bob about the fixed pivot 

l

g
0

. 

The boundary conditions for the state variables of the system are: 

 

(3.55) 

 

where sj.0 и sj.Т are the initial and final values of the ith state variable; t0 and T are the 

start and end times of optimal control of the system. The start time is known a priori, 

while the end time is determined by solving the optimal-control problem. In the case 

of acceleration of the pendulum, we have: 

 

 

(3.56) 

 

 

where opt
accelerT  is the duration of acceleration with time-optimal control of the system; 

vsteady is the steady-state speed of the suspension point. 

Zero initial conditions mean that the suspension point moves from rest and the 

bob does not oscillate. A simple pendulum with a movable pivot goes through three 

stages: acceleration, steady-state motion, deceleration. To determine the duration of 

steady-state motion, we assume that during acceleration and deceleration, the 

suspension point travels equal distances equal to Т·vsteady·2
-1. With this approximation, 

we have: 
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(3.57) 

 

where tsteady is the duration of steady-state motion of the pendulum; s is the set 

distance traveled by the pendulum. The distance traveled by the crane during 

deceleration should be refined to account for the possible stochastic perturbations that 

can occur during steady-state motion. In this case, the distance traveled by the 

pendulum during deceleration is not equal to Т·vsteady·2
-1. The following formulas hold 

for the decelerations stage: 

 

 

 

 

(3.58) 

 

 

 

where opt
decelerT is the duration of deceleration with time-optimal control of the system; 

Δх and Δv are the deviations of positions and speeds of the bob and suspension point 

at the beginning of deceleration; х1(t0) is the position of the suspension point at the 

beginning of deceleration. The initial conditions for system (3.58) mean that at the 

beginning of deceleration, there are oscillations of the bob which can be induced by a 

wind gust. Thus, to solve the time-optimization problem for the decelerating system, 

it is necessary to set Δх and Δv, position and speed of the suspension point at 

steady
opt

acceler tT 
 
 The final conditions (3.58) mean suppression of the oscillations and 

stoppage of the system at the set position s. 

The optimal-time criterion is given by: 
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Since after acceleration, the suspension point moves steadily with speed vsteady, 

the time-optimization problem is solved by minimizing the durations of acceleration 

and deceleration. 

Thus, the upper and lower limits of integration in (3.59) are different: they are 

given in (3.56) for acceleration and in (3.58) for deceleration. 

The control constraints are asymmetric due to the reduced force W: 

 

 

(3.60) 

 

 

where Fmax and Fmin are the maximum driving and braking forces determined by the 

overload capability of the electric drive of the system; and Fmax=-Fmin which follows 

from the capability of the electric drive to create electromagnetic torques equal in 

magnitude and opposite in direction. 

Note that constraints (3.60) are the same for acceleration and deceleration of 

the pendulum. In what follows, we will use modified control constraints that follow 

from (3.60): 

 

 

 

(3.61) 

 

 

 

 

where accelerumin
~  and accelerumax

~
 are the minimum and maximum controls feasible for the 

acceleration of the system; decelerumin
~  and decelerumax

~ are the minimum and maximum 

controls admissible for the deceleration of the system. Control constraints (3.61) 

mean that the direction of the electromagnetic torque does not change: the motor 
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alternately operates and idles (is de-energized). The advantages and disadvantages of 

this approach will be discussed below. 

Thus, two optimal-control problems for a simple pendulum with a movable 

pivot have been formulated. The first problem includes a mathematical model of 

system (3.17), boundary conditions for acceleration (3.55) and deceleration (3.57), 

optimization criterion (3.59), and control constraints (3.60). In the second problem, 

the control constraints are different: they are defined by (3.61). Note that the 

problems posed can be assigned to the class of problems of the stabilization of state 

variables [75, 81, 82] and the class of optimal-control problems [83, 84]. 

Time-optimal control is known [67, 71, 74] to be of relay form. Based on these 

data, it is necessary to solve the Cauchy problem: 

 

 

 

(3.62) 

 

 

 

where n is the number of stages in the motion of the system during acceleration or 

deceleration; ui is the control at the i-th stage of the motion of the system equal to the 

minimum or maximum feasible control; ti is the duration of the i-th stage of motion of 

the system; tξ is the duration of the ξ-th stage of motion of the system introduced as 

the time interval from the beginning of the controlled process to the beginning of the 

i-th stage of motion. The quantities tξ and ti are related by: 

 

(3.63) 

 

The superscript in (3.63) denotes the stage during which the state variable 

changes. For the i-th stage of motion of the system and for ui= const, the solution of 

the Cauchy problem (3.61) has the form: 
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(3.64) 

 

 

 

where 
ii BB 40 ,...,  − are constant coefficients: 

 

 

 

 

 

(3.65) 

 

 

 

 

 

Since the suspension point increases its speed at the acceleration stage, control 

u1 for the first stage of acceleration is chosen maximum possible: u1=umax for problem 

(3.54), (3.56), (3.58)-(3.60) and acceleruu max
1 ~  for problem (3.54), (3.56), (3.58), (3.59), 

(3.61). At the deceleration stage: u1=umin for problem (3.54), (3.56), (3.58)-(3.60) and 

deceleruu min
1 ~  for problem (3.54), (3.56), (3.58), (3.59), (3.61). As the system changes 

over to the subsequent stages of motion during either acceleration or deceleration, 

control instantaneously passes from one bound of the domain of feasible controls to 

another, i.e., umax and umin for problem (3.54), (3.56), (3.58)-(3.60) and accelerumax
~  and 

decelerumin
~

 for problem (3.54), (3.56), (3.58), (3.59), (3.61) alternate. If the control u1 

cannot be determined a priori, it can be chosen either maximum or minimum. If u1 is 
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set incorrectly, for example u1=umin, then it will appear during the solution that the 

duration of the first stage is equal or close to zero. Then we should set u1=umax. 

Substituting (3.55) and (3.58) into (3.64) and (3.65), we obtain functions describing 

the motion of the dynamic system during the first stage. Replacing t by t1 in the 

resulting expressions, we obtain formulas for state variables at the end of the first 

stage (for acceleration and deceleration). These formulas, as initial state variables, are 

substituted into formulas (3.64) for the second stage of motion. Continuing the 

calculations, we obtain the expressions 

  ),,,...,,,...,,...,,( minmax0.401 uusBBtttfTs j
ii

nij
n
j 

 
for problem (3.54), (3.56), (3.58)-

(3.60) and   )~,~,~,,...,,,...,,...,,( minminmax0.401
deceleracceleracceler

j
ii

nij
n
j uuusBBtttfTs 

 
for problem 

(3.54), (3.56), (3.58), (3.59), (3.61). 

It is rather difficult to find the value of n. If the controlled dynamic system is 

normal and the associated roots of the characteristic equation are real, then it is 

possible to use Feldbaum’s n-interval theorem. In this case, the number of stages of 

the motion of the system is no greater than its order [73]; then n should be set equal 

to the order of the dynamic system. The conditions of the n-interval theorem are not 

satisfied for the optimal-control problems under consideration because the 

characteristic equation of the dynamic system has complex roots. 

Let n=5. Thus, the optimal-control problems (3.54), (3.56), (3.58)-(3.60) and 

(3.54), (3.56), (3.58), (3.59), (3.61) can be reduced to nonlinear-programming 

problems: 

 

(3.66) 

 

 

which should be solved for the unknowns t1, t2, t3, t4 and t5. For the optimal-control 

problems (3.54), (3.56), (3.58)-(3.60) and (3.54), (3.56), (3.58), (3.59), (3.61), the 

expressions 










5

1

5

i
ij ts

 
will be different. According to the Lagrangian multiplier 

,

;0

min;

5
.

5

0

5

5

0

Tj
i

ij

i

i
i

sts

t

t





















CHAPTER 3 

150 

 

method, to satisfy equality constraints, we will solve the problem of finding the 

minimum of a composite function: 

 

(3.67) 

 

 

where λj are Lagrangian multiplier corresponding to the j-th constraint. Note that the 

expressions 
5
.

5

0

5
Tj

i
ij sts 
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

 include transcendental functions, which complicates the 

solution of problem (3.67). Therefore, to determine the unknowns t1, t2, t3, t4 and t5, it 

is necessary to use numerical methods, such as the particle swarm method [80], 

which allows finding the global minimum of function (3.67).  

To illustrate the method proposed, we will solve problem (3.67) using the 

parameters of a harbor bucket unloader (Table 3.6). 

Table 3.6 Values of the parameters used in the calculations 

Parameter Unit Value 

Reduced weight of crane m1 kg 5.34·104 

Reduced weight of cargo m2 kg 3.51·104 

Length of flexible suspension l m 1.00·101 

Steady-state speed of crane vsteady m/sec 2.76·100 

Set distance of travel of crane with cargo s m 3.26·101 

Reduced force resisting the motion of crane W N 1.73·104 

Maximum driving force of crane Fmax N 1.30·105 

 

To solve problem (3.67), we will use the particle-swarm method. The swarm 

parameters are summarized in Table 3.7. 

Problem (3.6) is solved four times: for acceleration and deceleration of the 

crane for classical (2.6) and modified (2.7) constraints. The values of t1, t2, t3, t4, t5 are 

found iteratively: setting n = 5 causes two roots to be close to zero. Then n=5–2=3 is 

set, i.e., the stages of motion corresponding to nearly zero roots are rejected. 
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Table 3.7 Parameters of particle-swarm method 

Parameter Value 

Number of iterations 100 

Number of particle in swarm 50 

Inertia coefficient w 0.72 

Acceleration constants c1=c2 1.19 

Domain of searching for values of t1, t2, t3, t4, t5 0…4 

 

The values of the state variables 

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are calculated again and a 

nonlinear-programming problem is formulated: 

 

(3.68) 

 

The results of solving problem (3.68) are summarized in Table 3.8. 

Table 3.8 Parameters of particle-swarm method 

Stages Acceleration duration Deceleration constraints 

Control 

constraints (3.60) 

Control  

constraints (3.61) 

Control 

constraints (3.60) 

Control 

constraints (3.61) 

t1, sec 1,45 1,17 1,14 0,71 

t2, sec 0,56 1,18 0,85 1,95 

t3, sec 1,45 1,17 1,18 0,71 

 

It follows from Table 3.8 that the durations of stages of the motion of the 

system are different in different problems, which is due to the different control 

constraints (3.60) and (3.61). 

To illustrate the solution of the problem, we will plot the phase portrait of the 

oscillations of the cargo (fig. 3.13) and the curve of variation in the crane speed (fig. 

3.14) (the gray and black curves correspond to constraints (3.60) and (3.61), 

respectively). 
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Fig. 3.13 Phase plots of the cargo (load) oscillations 

 

 

Fig. 3.14 Velocity of the crane 
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Figures 3.13 and 3.14 indicate that the cargo stops oscillating once the crane 

has stopped. The rate of variation in the crane speed and the maximum vertical 

deviation of the suspension are much lower when the modified constraints (3.61) are 

used. This reduces the dynamic loads and increases the life of the mechanisms and 

metalwork of the crane. 

Summarizing the calculations performed, we conclude that the value of n 

should be found iteratively. First, a value of n based on a priori data is specified, 

which is decreased during solution of the nonlinear-programming problem: 

 

(3.69) 

 

 

where k is the number of state variables of the system. Some of the solutions of 

problem (3.69) will be zero (or close to zero, depending on the accuracy of the 

numerical method chosen). The value of n should be decreased by the number of zero 

(or nearly zero) solutions of problem (3.69) and to repeat the calculations, rejecting 

those stages whose duration is zero (or close to zero). This allows finding the 

solutions of problem (3.69) for which ti> 0. To assess the efficiency of the optimal 

controls obtained, it is necessary to model the motion of the system and to 

experimentally test the optimal control [85]. 

 

 

Conclusions to chapter 3 

 

1. It is impossible to find the exact solution of the optimal control problem for 

four-mass dynamical model of a crane. The efficient methods which reduce optimal 

control problem to the linear programming problem are direct variational techniques. 

It is desirable to seek the solution of the problem at limited domains of phase 

coordinates and dynamical parameters of a system. Obtained in the work suboptimal 

control of the crane movement could be implemented with frequency-controlled drive 
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Obtained in the work suboptimal control of the crane movement could be 

implemented with frequency-controlled drive [33]. 

2. In the study, the closed-loop problem of optimal control has been solved. 

Obtained optimal control of the system „crane-load” allows for minimizing the 

duration of the acceleration mode with taking into account the non-symmertical 

control constraints. The novelty of the problem-solving approach is in reducing the 

initial problem to the non-linear programming problem and the using for its solving 

advanced PSO-based technique. Developed in the study approach may be used for the 

deceleration of the system „crane-load” [51]. 

3. One may use the method of dynamic programming which allows to 

synthesize the optimal closed-loop control without constraints on the control. The use 

of nonlinear elements such as „saturation” provides a suboptimal control that meets 

the limits imposed on the control. The suboptimal closed-loop control consists of 

pieces of optimal control and of the boundary limits of the control domain. The 

variation of the coefficients in the structure’s optimization criterion is the possible 

way to solve the problem of the synthesis of the optimal control which would always 

be in the acceptable control domain even when these limits are the functions of the 

time and of the phase coordinates of the dynamical system „crane-load” [65]. 

4. Time-optimization problems can be reduced nonlinear-programming 

problems only for systems whose equations of motion can be solved analytically 

(generally, linear systems of no higher than the fourth order, some linear systems of 

higher than the fourth order, and some classes of nonlinear systems). Using the 

modified control constraints allows less heavy-duty operation of the crane drive 

because the sign of the driving force does not change during acceleration (or 

deceleration). It is hoped that use of modified constraints similar to (3.61) for other 

problems will make it possible to determine optimal controls to improve the 

performance of engineering systems by slightly increasing the duration of their 

motion. It remains to study the influence of constraints on the speed of motion of the 

system. The associated problem should be rigorously formulated and solved with 

formal mathematical methods. By now, we can provide only purely theoretical 
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considerations: if the values of control constraints are infinitely large (constraints are 

absent), the duration of the motion of the system will be infinitesimal; if the values of 

control constraints are infinitely small (zero in the limit), the duration of the motion 

of the system will be infinitely long [85]. 
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